Journal cover Journal topic
Solid Earth An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.380 IF 2.380
  • IF 5-year value: 3.147 IF 5-year
    3.147
  • CiteScore value: 3.06 CiteScore
    3.06
  • SNIP value: 1.335 SNIP 1.335
  • IPP value: 2.81 IPP 2.81
  • SJR value: 0.779 SJR 0.779
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 32 Scimago H
    index 32
  • h5-index value: 31 h5-index 31
Discussion papers
https://doi.org/10.5194/se-2019-43
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-2019-43
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 27 Mar 2019

Research article | 27 Mar 2019

Review status
This discussion paper is a preprint. It has been under review for the journal Solid Earth (SE). A final paper in SE is not foreseen.

Evolution of a long-lived continental arc: a geochemical approach (Arequipa Batholith, Southern Peru)

Sophie Demouy, Mathieu Benoit, Michel de Saint-Blanquat, and Jérôme Ganne Sophie Demouy et al.
  • GET, OMP, Université Paul-Sabatier – CNRS – IRD, 14 avenue Edouard-Belin, 31400 Toulouse, France

Abstract. Batholith emplacements within a continental margin may bear witness of a magmatic input lasting for several million years. Consequently, the geochemical signatures of such sections are complex, and their understanding in terms of petrological processes, is crucial. The Arequipa section of the Coastal Batholith of Southern Peru was discontinuously constructed during several periods of magmatic activity, from the Jurassic to the Paleocene (200–175 Ma, and 90–60 Ma). Thermobarometric data on amphiboles indicates two main levels of emplacement at the batholith scale, the deepest between 5 and 7 km in depth and the second around 3.5 km. The present day outcropping of these different units at the same elevation argue for a large vertical movement along the Lluclla Fault System between 76 and 68 Ma. Both major/trace element contents and Nd-Sr isotopes show a large variability that is not random. The data dispersion is consistent with a two-staged evolutionary model of the magmatic arc, inspired by the MASH model: (i) an early stage dominated by hybridization and fractional crystallization processes, (ii) a late stage in which magmas were homogenized and mainly evolved by fractional crystallization. The change from one stage to another is controlled by the thermal state of the crustal arc section, especially the Deep Crustal Hot Zone.

Sophie Demouy et al.
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Sophie Demouy et al.
Sophie Demouy et al.
Viewed  
Total article views: 233 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
168 62 3 233 14 0 0
  • HTML: 168
  • PDF: 62
  • XML: 3
  • Total: 233
  • Supplement: 14
  • BibTeX: 0
  • EndNote: 0
Views and downloads (calculated since 27 Mar 2019)
Cumulative views and downloads (calculated since 27 Mar 2019)
Viewed (geographical distribution)  
Total article views: 145 (including HTML, PDF, and XML) Thereof 144 with geography defined and 1 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
Latest update: 19 Jul 2019
Publications Copernicus
Download
Short summary
The genesis of the continental crust above subduction zones remains controversial and massive production of granite in short period of time, also named flare-up events are more and more documented but poorly constrained. In the present manuscript we present a detailed geochemical study of samples collected in the Arequipa region (Peru), where a flare-up event is suspected. Using these data, we propose an elegant explanation for the converging geochemical signatures associated to this event.
The genesis of the continental crust above subduction zones remains controversial and massive...
Citation