Interactive comment on “Bayesian geological and geophysical data fusion for the construction and uncertainty quantification of 3D geological models” by Hugo K. H. Olierook et al.

Anonymous Referee #2

Received and published: 13 February 2019

I thank the editor for inviting me to review this paper. Unfortunately, I find this paper quite underwhelming. The paper describes very little that has not already been shown in previous works, nor do the results convincingly reveal new understanding from the region. It is thus difficult to understand what contribution this study makes either to probabilistic methods in geophysics, or geological understanding of the Gascoyne Province. This is compounded by the authors’ inadequate review of existing work and failure to place theirs in context with the discipline. The authors make statements about the “importance” or their results with no justification, and how that their method “is the only technique that provides a range of solutions” which is false. To reiterate, the authors needs to spend more time reviewing the existing literature.

One positive is that the manuscript is well-written and structured. I suspect the authors will be able to remedy many of the deficiencies listed here and produce an adequate revision.

I list the major issues directly below, followed by relatively minor comments.

Major comments.

Valid criticism is made of existing work in the Introduction (P2, L9-14), and refers to how “these approaches still require a significant degree of human decision making into how to fuse disparate geoscientific datasets.” And “these approaches still largely elide the question of how the joint distribution of such parameters is meant to be derived.” This infers the manuscript will then address these important issues, which it barely does. These statements are then followed by another which claims the presented method “will fuse all available constraints in a probabilistically rigorous fashion.” The method doesn’t fuse all available constraints (see discussion, where this is admitted), in fact it only uses a small subset of available data. One major omission is structural and drillhole data, which is used or can be used in all the methods described in the papers cited in this paragraph. These claims are at best poorly made, and at worse false. Pakyuz-Charrier and Giraud both address the issues of how joint distribution of parameters (geophysics, drill holes, petrophysics) are made. A far better justification of these statements needs to be made in order to emphasise the contribution of this paper to advancing this important area of research.

Comparing models results with maps. If the maps were made using interpretations from geophysics, then the model, which is based on geophysics, matching the map is not surprising, and expected, and thus not an adequate validation exercise. Please better justify the validation method.

How is the geological model built? Figure 2 implies five units are modelled, and then it’s revealed deep into the discussion that only two were modelled. Differentiating between two geological units is not that exciting, not useful, especially at the scale of the study,
so the authors need to show better justification as to how this method is novel, and worthy of publication.

Two important papers that are not referred to and are very relevant to this work are:


Both these works describe methods similar to that being described here and deserve a good review in this paper. In particular Wellman et al. 2017 presents a Bayesian framework for geophysics that authors would benefit from during their review.

No figure shows any 3D model, either the initial, or geophysically constrained geological version, nor the inverted geophysical volume. This is a critical thing to show to the readers of Solid Earth, most of whom are geoscientists. How can we appreciate your endeavours without seeing the results, especially when “3D geological models” is in the title?

Downsampling of “geological” (really lithostratigraphic) observations. You have detailed “petrographic, geochemical and geochronological knowledge obtained on a subset of WAROX data” which would surely give far higher lithological resolution that the five bulk units that make your model (legend of fig. 5). How did you downsample these observations into the five major groups? As you hint, there is significant uncertainty, not just in correctly identifying the correct rock unit (though with the data you have this source of error should be reduced, but not irreducible). This alertoric uncertainty is inadequately addressed in P9, L19. How did you determine the error in these observations? How was it translated into a Beta distribution? There is also the loss of information from the process of downsampling – i.e. epistemic uncertainty (which is reducible). You refer to section 3.4 in this matter, but section 3.4 barely describes this in a geological context. Other issues with section 3.4 exist. Next paragraph.

Section 3.4 needs significant work. It is quite disjointed from the previous section. For example, how are the survey forward models determined? Why alpha = 1 and Beta = 2? There is no effort to make the text link with the previous sections, explain the importance of a Beta distribution to a Bayesian framework, nor appropriate translation of known uncertainties within a geological context or even related to widely understood sources of uncertainty in geoscientific data. In its current form this section is incomprehensible.

The results are not presented well. Section 4.2 Residuals from forward models: Statistics are presented without any indication as to whether they are acceptable (e.g. “Aeromagnetic residuals display an approximately Gaussian distribution of 0 +358 –31725 nT (2σ, 21% of the total magnetic range” – so what?) or even higher or lower than expected.

Section 4.3 Probability density of layer locations. Text associated with figure 9 states that rock observations near the contact between the Halfway Gneiss and Durlacher Supersuite are misclassified. None of this is very surprising given it’s a contact which any geologist knows are hard to define. But the relevance of this finding is difficult to discern given the method for building the model isn’t described anywhere, the cell sizes of the model are not given (see comments below), nor how the contact was defined in the first place. All it infers (given no other information) is that Obsidian doesn’t manage to determine the geometry of this contact well. This may not be true, but none of the other results presented show that Obsidian has done a good job in this regard. This is not helped with the lack of description for geological model construction.

C3

C4
You state that results show the Durlacher Supersuite to be in two “domains”. This isn’t surprising given it is a Supersuite, and by definition made up of multiple suites, which can be defined as domains. This interpretation is also not supported by any geological data, nor is the importance of this made apparent during the introduction, discussion or conclusion. The results are described as being far more successful than they really are. Page 14, line 13: “Highly similar” – not really. There are quite few differences, plus you have only shown the probabilities of two units, when the 3d model was built using 5 units (maybe? Again, describe how the model was built). What about the other three units? The assessment of this method is thus inadequate. As such much of the discussion unconvincing, especially when two select slices of the probabilistic model are shown.

You admit that structural data is not used in the discussion (P14, L29). This needs to be stated clearly in the method (where a description of model construction is required – see previous comments) and makes earlier comments criticizing previous work disingenuous (see major comments). It is self-evident that structural data is very useful for geological models. The use of structural data is shown in other methods that have been around for almost a decade (see uncertainty work by Wellmann, de la Varga, Bond, Lark, Lindsay, Jessell), or general modelling (see Calcagno paper). Why can you not do this? The same can be said for drillhole data, which other methods also use. The main problem is that both structural and drill hole data from the area is publically available, but not used. So it appears that Obsidian, or the described method cannot use these data presently, otherwise would have done so. Other methods (as cited earlier) can use both structural, seismic and drillhole. How do the authors then justify this method as novel, or one people should adopt given it has severe limitations to inputs? Simply being Bayesian is not enough, especially as Bayesian methods are well suited to integration of different data types. Other Bayesian techniques have been proposed (de la Varga, Wellmann). This aspect needs a much fuller justification and discussion.

C5

Minor Comments
Page 3, line 7: define “data-rich”. Rich in diversity or coverage, both? Quantify this richness.

Page 4, line 11: technically measurements of gravitational acceleration and magnetic field strength

Page 4, line 16 – Be clear about the shortcomings of other work. Giraud et al. in review does acknowledge alternative geophysical, petrophysical and geological scenarios. Are you referring to alternative forms of parameterisation for regularization?

Page 4, line 27: it is unclear what you mean by “geophysical processes”. Are you talking about how well the models represent the geology?

Page 6, line 18: “PTMCMC” define your acronyms before using them.

Subheading 3.1. “World” is an expansive term that infers all parameters, data, models, inferences, assumptions are under consideration in the following paragraph, which isn’t true. “3D geological model parameterization” is more specific and less confusing. The same applies to all references of “world” models. This is important as you use and describe more than one model through the manuscript, including statistical, geophysical and conceptual are present as well.

Page 6 line 30: should be “magnetic susceptibility and density data”

Section 3.2: You need to show where these petrophysical data were acquired on a map (Fig. 2?). Presumably the petrophysical data locations will be different to the “surface observations” shown in Fig. 2. Given the caption describes them as geological surface observations.

Page 7, line 21. Please describe what Bayesian “fusion” is, or just say the data were input to the Obsidian framework.

Page 7, line 31: explain the source of these “correlations”, what they are correlated
Page 9, Line 23 PT-MCMC or PTMCMC (as P6,L18)

Page 11, Line 18 Discussion of large Gweke scores

Page 11, Line 21 Figure 8 needs to show the measured interpolated image with the forward models for easy comparison, rather than forcing the reader to switch between figures on different pages. The reader is also referred to figure 2 when describing magnetic lineaments, but figure 2 is a geological map. Are the authors assuming the NW strike of the geology will also produce NW striking magnetic lineaments? This is a reasonable interpretation, but the authors need to first make that interpretation for the statement in line Page 11, Line 22.

Page 11, Line 25 – okay, but so what?

Page 11, Figure 8 caption. Labelling of figure parts appears to be incorrect. b) shows units in mGal, so not magnetic intensity, c) shows a histogram, not the modelled contours

Page 12, Line 14. Distances have no meaning without telling us what the model cell sizes are first. How many cells does 300-1000m represent?

Page 12, Line 14. “The ellipsoidal Durlacher Supersuite inlier is heterogeneously constrained.” What does this mean and why is it relevant?

Page 13, Line 3 “a function of a long-wavelength (i.e. deep) gravity response” Careful here. A long wavelength is not always deep. It can be laterally extensive but shallow.

Page 13, Line 6. I would think more petrophysical data from “other geological units” (see previous sentence) would be more useful to define the lithostratigraphic diversity

Page 13, Line 11-20 Annotate the figures with the various features being described here (Chalba SZ, Durlacher SS ‘spur’ and ‘sliver’ etc.)

Page 13, line 19-20. Tells me the initial 3D model is wrong.

Page 13, line 31. “Importantly, our method is the only technique that provides a range of solutions and quantitatively accounts for all the input assumptions” This grandiose statement needs far more justification. I actually think this should be removed entirely, given the technique is poorly described in the first place.

Page 14, line 1-9. Figure 10d? Over-interpreted results. “Definitively separated” Plus given the sections only extend to 4km, how can you be sure the Durlacher remains separated beyond that? Figure 10 d looks like the Halfway Gneiss only extends as far as 4km depth (which is also probably a function of the model volume parameters? Also needs discussing). You then state correctly in later lines (lines 4-5) that “it was difficult to know whether this spur of Halfway Gneiss between the two Durlacher Supersuite domains continued at depth or was truncated in the near subsurface”. Hardly definitive! “This important contribution shows that small geological volumes on the scale of a few km can be resolved accurately and will be important when this modelling output is up-scaled to larger regions.” Small volumes can be detected given appropriate geophysical data resolution and corresponding model parameters. Small volumes have also been detected by many other methods which I suggest you spend some time reviewing (Li and Oldenburg papers, Peter Fullagar, Guillen, etc etc) so you realise this is not a world first. Upscaling models to larger regions is also commonplace. If you are to make this kind of statement, please explain how upscaling should be done.

Page 14, line 29. How are drill holes going to help Bayesian methods >4km when they rarely extend beyond 400m?
Interesting concept, and I agree should be done, but expand on how this would be achieved?