Journal cover Journal topic
Solid Earth An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.165 IF 4.165
  • IF 5-year value: 4.075 IF 5-year
  • CiteScore value: 4.28 CiteScore
  • SNIP value: 1.501 SNIP 1.501
  • SJR value: 1.060 SJR 1.060
  • IPP value: 4.21 IPP 4.21
  • h5-index value: 29 h5-index 29
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 27 Scimago H
    index 27
Discussion papers
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 21 Feb 2019

Research article | 21 Feb 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Solid Earth (SE).

Imaging East European Craton margin in Northern Poland using extended-correlation processing applied to regional reflection seismic profiles

Miłosz Mężyk1, Michał Malinowski1, and Stanisław Mazur2 Miłosz Mężyk et al.
  • 1Institute of Geophysics Polish Academy of Sciences, Warsaw, 01-452, Poland
  • 2Institute of Geological Sciences Polish Academy of Sciences, 00-818, Warsaw, Poland

Abstract. In NE Poland, the Eastern European Craton (EEC) crust of the Fennoscandian affinity is concealed under a Phanerozoic platform cover and penetrated by the sparse deep research wells. Most of the inferences regarding its structure rely on geophysical data. Until recently, this area was covered only by the refraction/wide-angle reflection (WARR) profiles, which show a relatively simple crustal structure with a typical cratonic 3-layer crust. ION Geophysical PolandSPAN™ regional seismic program, acquired over the marginal part of the EEC in Poland, offered a unique opportunity to derive a detailed image of the deeper crust. Here, we apply extended correlation processing to a subset (~950 km) of the PolandSPAN™ dataset located in NE Poland, which enabled us to extend the nominal record length of the acquired data from 12 to 22 s (~60 km depth). Our new processing revealed reflectivity patterns, that we primarily associate with the Paleoproterozoic crust formation during the Svekofennian (Svekobaltic) orogeny and which are similar to what was observed along the BABEL and FIRE profiles in the Baltic Sea and Finland, respectively. We propose a mid- to lower-crustal lateral flow model to explain the occurrence of two sets of structures that can be collectively interpreted as kilometre-scale S-C' shear zones. The structures define a penetrative deformation fabric invoking ductile extension of hot orogenic crust. Localized reactivation of these structures provided conduits for subsequent emplacement of gabbroic magma that produced a Mesoproterozoic anorthosite-mangerite-charnockite-granite (AMCG) suite in NE Poland. Delamination of overthickened orogenic lithosphere may have accounted for magmatic underplating and fractionation into the AMCG plutons. We also found sub-Moho dipping mantle reflectivity, which we tentatively explain as a signature of the crustal accretion during the Svekofennian orogeny. Later tectonic phases (e.g. Ediacaran rifting, Caledonian orogeny) did not leave a clear signature in the deeper crust, however, some of the subhorizontal reflectors below the basement, observed in the vicinity of the AMCG Mazury complex, can be alternatively linked with lower Carboniferous magmatism.

Miłosz Mężyk et al.
Interactive discussion
Status: open (until 08 Apr 2019)
Status: open (until 08 Apr 2019)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Miłosz Mężyk et al.
Miłosz Mężyk et al.
Total article views: 191 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
153 36 2 191 1 1
  • HTML: 153
  • PDF: 36
  • XML: 2
  • Total: 191
  • BibTeX: 1
  • EndNote: 1
Views and downloads (calculated since 21 Feb 2019)
Cumulative views and downloads (calculated since 21 Feb 2019)
Viewed (geographical distribution)  
Total article views: 120 (including HTML, PDF, and XML) Thereof 120 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
No saved metrics found.
Latest update: 25 Mar 2019
Publications Copernicus