Dear Editors,

We have received the revisions that have been suggested for our manuscript “First evidence of active transpressive surface faulting at the front of the eastern Southern Alps, northeastern Italy. Insight on the 1511 earthquake seismotectonics”. In the following pages, please find the details of our comments and the changes we have made to the revised manuscript, along with our answers to the Reviewers to each point.

We hope that in light of these changes and improvements, you and your Referees will now feel that our manuscript is of sufficient quality and impact for publication in Solid Earth. We would also like to thank you and your Referees for your comments and suggestions, as we believe that these have permitted us to improve the quality of our research and manuscript.

We look forward to hearing from you further.

Best regards,

Dr. Emanuela Falcucci
For and on behalf of all of the Authors

Reviewer 1 (Dario Zampieri):

1) Table 2 of the Auxiliary material can be improved by a better organization and can be included in the text. Please draw a true table with columns and rows. Include a column with the laboratory and/or field label of the samples. Insert a column with specification of the type of analysed material (i.e. wood, charcoal, bulk). Please, comment in the text why the ages of the Unit 2 are so different. The ages of the two samples in Fig. 4c are similar (945 AD – 1047 AD and 674 AD – 893 AD), while the age of the sample in Fig. 4a is younger (1485 AD – 1792 AD). The age of the sample from the Unit 3 is very similar to that of the sample from the Unit 4. Could the age of Unit 3 refer to a reworked element?

Answer:
We accepted the Reviewer request. We have now added a table in the main revised manuscript with the details of the achieved radiocarbon dating. We have now explained in the revised manuscript (paragraph 5) that the obtained ages refer to charcoals, that have been included and transported by the alluvial and colluvial units in which we found them. So, the age can be similar each other or sparse. In light of this, we can only consider the most recent age as a terminus post quem for the unit deposition and, thus, for the deformation events.

2) Technical corrections:

Answer:
All of the technical corrections have been accepted. The revised manuscript and the figures have been modified accordingly.

Figure 1 comments: the label a, b, c are lacking. In b) the fault traces lying in the alluvial plain must be dashed lines (blind faults).

Answer:
Accepted and now modified.

Figure 2 comments: please, enlarge the inset content on the upper right corner and explain the line drawing symbols (trenches, drill-hole and the arcuate line (is it the trace of the cross section in 2c?) Specify which are the trenches a, b and c of Fig. 4. Are the three segments on the hanging wall anticline in c) the three trenches? If so, why are they inclined?

Answer:
The three black lines in Figure 2c (now figure 4) on the hanging wall of the thrust are not the location of the trenches but they were a simplified representation of the extrados fractures we identified along the trench walls. We have now removed them because hard to understand.

Figure 3 comments: in (a) the black rectangle cited in the caption is lacking. Please, explain also the significance of the curved dashed line.

Answer:
We have now added a rectangle to indicate the trench siting. We have now also removed the curved dashed line because hard to understand.
Figure 4 comments: The deposit in grey colour infilling the erosional feature incising units 2 and 3 in all trenches is not labelled, nor is it described in the caption. The grey colour in the trenches 1 and 2 is similar, but different from that of trench 3. Are they different deposits?

Answer:
We have now added in the figures the label anthropogenic unit, and modified the colour.

Figure 5 comments: the hanging wall fold of the CVT fault in the cross-section is quite different from C3 the same fold in the 3D scheme. Also the geometry of the faults is different.

Answer:
We have now modified the figure to make the cross-section and the 3D scheme comparable.

Captions:

All of the comments on the figure captions have been accepted and we have now modified them.

First evidence of active transpressive surface faulting at the front of the eastern Southern Alps, northeastern Italy. Insight on the 1511 earthquake seismotectonics

Emanuela Falcucci1, Maria Eliana Poli2, Fabrizio Galadini1, Giancarlo Scardia3, Giovanni Paiero5, Adriano Zanferrari2

1Istituto Nazionale di Geofisica e Vulcanologia, Roma, Via di Vigna Murata 605, 00143, Italy
2University of Udine – Dept. of Agricultural Food, Environmental and Animal Sciences, Udine, Italy
3Università degli Studi di Torino, Dipartimento di Scienze della Terra, Torino, Italy
4Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome – Geophysical Laboratory of the Earth, Rome
5Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome – Geophysical Laboratory of the Earth, Rome

Correspondence to: Emanuela Falcucci (emanuela.falcucci@ingv.it)

Abstract. We investigated the eastern corner of northeastern Italy, where a system of NW-SE trending dextral strike-slip faults of western Slovenia intersects the south-verging fold and thrust belt of the eastern Southern Alps. The area suffered the largest earthquakes of the region, among which are the 1511 (Mw 6.3) event and the two major shocks of the 1976 seismic sequence, with Mw=6.4 and 6.1 at the Colle Villano thrust and the Borgo Paris-Civadale thrust-slip fault have been first analyzed by interpreting industrial seismic lines and then by performing morpho-tectonic and paleoseismological analyses. These different datasets indicate that the two structures define an active, coherent transpressive fault system that activated twice in the past two millennia, with the last event occurring around the 15th–17th century. The chronological information, and the location of the investigated fault system suggest its activation during the 1511 earthquake.

Keywords. active transpressive tectonics, surface faulting, paleoseismological investigations, 1511 earthquake, eastern Southern Alps.

1 Introduction

The Late Miocene-Quaternary counterclockwise rotation of the Alpine orogenic system generated NE-SW-verging shortening and NW-SE trending frontal thrust belts (e.g., Locardi and Bosellini, 2005; Zanferrari et al., 2013). This issue is of prime importance considering that this region has been the focus of some of the strongest earthquakes in continental Europe, among which are the 1348 (Mw 6.6) and the 1511 (Mw 6.3) events, as well as the two major shocks of the 1976 seismic sequence (Mw 6.4 and 6.1). In particular, despite the large number of studies (e.g., Ambrozey, 1976; Ribaric, 1979; Ravey et al., 2013), the epicentre, the causative fault(s) and the kinematics of the 1511 earthquake are still a matter of debate. Here we describe the results of a multi-disciplinary study performed in the 1511 earthquake area, based on geological, geophysical surveys, industrial seismic lines interpretation, paleoseismological trenching and the drilling of a 20 m-deep core. Specifically, we focus on the Borgo Paris-Civadale Fault (henceforth BFCF), a dextral strike-slip structure that experienced a complex kinematic history (e.g., Zanferrari et al., 2008; Zanferrari et al., 2013), and the Colle Villano Thrust (henceforth CVT), that shows geomorphic hints of recent activity (Galadini et al., 2005). We aim to understand the relationship between these very close structures and their role in the regional structural-kinematics framework, and to acquire new clues on the 1511 earthquake seismotectonics.

2 Tectonic setting and seismic activity

Since the Middle Miocene, the Sveco-Scandes and Sveco-EME-trending fronts of the eastern Southern Alps in the Friuli region (Fig. 1a) (e.g., Castellarin et al., 2006, and reference therein) cut and re-folded the external Palaeogene Dinarides compressive structures (e.g., Doglioni and Bosellini, 1987, Zanferrari et al., 2013). At the Miocene-Pliocene transition, the counterclockwise rotation of the Adria microplate produced dextral strike-slip deformation in Slovenia and prevailing thrusting at the eastern Southern Alps, in northeastern Italy (Zanferrari et al., 2013). Seismicity reflects such a kinematic transition, being characterized by both earthquakes caused by dextral strike-slip and reverse ruptures (Kastelic et al., 2008). This issue is by all means relevant considering that this region has been the focus of some of the strongest historical earthquakes of continental Europe, among which are the 1348 (Mw 6.6) and the 1511 (Mw 6.3) events, as well as the two major shocks of the 1976 seismic sequence (Mw 6.4 and 6.1). In particular, despite the large number of studies (e.g., Ambrozey, 1976; Ribaric, 1979; Ravey et al., 2013), the epicentre, the causative fault(s) and the kinematics of the 1511 earthquake are still a matter of debate. Here we describe the results of a multi-disciplinary study performed in the 1511 earthquake area, based on geological, geophysical surveys, industrial seismic lines interpretation, paleoseismological trenching and the drilling of a 20 m-deep core. Specifically, we focus on the Borgo Paris-Civadale Fault (henceforth BFCF), a dextral strike-slip structure that experienced a complex kinematic history (e.g., Zanferrari et al., 2008; Zanferrari et al., 2013), and the Colle Villano Thrust (henceforth CVT), that shows geomorphic hints of recent activity (Galadini et al., 2005). We aim to understand the relationship between these very close structures and their role in the regional structural-kinematics framework, and to acquire new clues on the 1511 earthquake seismotectonics.

2 Tectonic setting and seismic activity

Since the Middle Miocene, the Sveco-Scandes and Sveco-EME-trending fronts of the eastern Southern Alps in the Friuli region (Fig. 1a) (e.g., Castellarin et al., 2006, and reference therein) cut and re-folded the external Palaeogene Dinarides compressive structures (e.g., Doglioni and Bosellini, 1987, Zanferrari et al., 2013). At the Miocene-Pliocene transition, the counterclockwise rotation of the Adria microplate produced dextral strike-slip deformation in Slovenia and prevailing thrusting at the eastern Southern Alps, in northeastern Italy (Zanferrari et al., 2013). Seismicity reflects such a kinematic transition, being characterized by both earthquakes caused by dextral strike-slip and reverse ruptures (Kastelic et al., 2008). This issue is by all means relevant considering that this region has been the focus of some of the strongest historical earthquakes of continental Europe, among which are the 1348 (Mw 6.6) and the 1511 (Mw 6.3) events, as well as the two major shocks of the 1976 seismic sequence (Mw 6.4 and 6.1). In particular, despite the large number of studies (e.g., Ambrozey, 1976; Ribaric, 1979; Ravey et al., 2013), the epicentre, the causative fault(s) and the kinematics of the 1511 earthquake are still a matter of debate. Here we describe the results of a multi-disciplinary study performed in the 1511 earthquake area, based on geological, geophysical surveys, industrial seismic lines interpretation, paleoseismological trenching and the drilling of a 20 m-deep core. Specifically, we focus on the Borgo Paris-Civadale Fault (henceforth BFCF), a dextral strike-slip structure that experienced a complex kinematic history (e.g., Zanferrari et al., 2008; Zanferrari et al., 2013), and the Colle Villano Thrust (henceforth CVT), that shows geomorphic hints of recent activity (Galadini et al., 2005). We aim to understand the relationship between these very close structures and their role in the regional structural-kinematics framework, and to acquire new clues on the 1511 earthquake seismotectonics.

2 Tectonic setting and seismic activity

Since the Middle Miocene, the Sveco-Scandes and Sveco-EME-trending fronts of the eastern Southern Alps in the Friuli region (Fig. 1a) (e.g., Castellarin et al., 2006, and reference therein) cut and re-folded the external Palaeogene Dinarides compressive structures (e.g., Doglioni and Bosellini, 1987, Zanferrari et al., 2013). At the Miocene-Pliocene transition, the counterclockwise rotation of the Adria microplate produced dextral strike-slip deformation in Slovenia and prevailing thrusting at the eastern Southern Alps, in northeastern Italy (Zanferrari et al., 2013). Seismicity reflects such a kinematic transition, being characterized by both earthquakes caused by dextral strike-slip and reverse ruptures (Kastelic et al., 2008). This issue is by all means relevant considering that this region has been the focus of some of the strongest historical earthquakes of continental Europe, among which are the 1348 (Mw 6.6) and the 1511 (Mw 6.3) events, as well as the two major shocks of the 1976 seismic sequence (Mw 6.4 and 6.1). In particular, despite the large number of studies (e.g., Ambrozey, 1976; Ribaric, 1979; Ravey et al., 2013), the epicentre, the causative fault(s) and the kinematics of the 1511 earthquake are still a matter of debate. Here we describe the results of a multi-disciplinary study performed in the 1511 earthquake area, based on geological, geophysical surveys, industrial seismic lines interpretation, paleoseismological trenching and the drilling of a 20 m-deep core. Specifically, we focus on the Borgo Paris-Civadale Fault (henceforth BFCF), a dextral strike-slip structure that experienced a complex kinematic history (e.g., Zanferrari et al., 2008; Zanferrari et al., 2013), and the Colle Villano Thrust (henceforth CVT), that shows geomorphic hints of recent activity (Galadini et al., 2005). We aim to understand the relationship between these very close structures and their role in the regional structural-kinematics framework, and to acquire new clues on the 1511 earthquake seismotectonics.
1a) This is absorbed by WSW-ENE trending, SSW-verging thrust front of the eastern Southern Alps, and by NW-SE trending, right lateral strike-slip fault systems in western Slovenia. The major historical earthquake of the study area struck on March 1511 (maximum intensity = 7 on the MCS scale). In spite of many studies, many issues still remain to be solved about this event. Ambraesius (1976) suggested M=6-6 and epicentre located northwest of Tolmin, in the Italy-Slovenia border; Ribaric (1979) suggested that the event has actually been made of two shocks, one occurred at 15h CET in the Idria zone, in Slovenia, with possible magnitude 6.9, and a second at 20h CET east of Gemona, in Friuli, with possible magnitude 7.0-7.2.

Kolir and Ceci (2011) questioned Ribaric's interpretation of the historical information and proposed a single main shock on March 26, at 14:40 GMT. By inverting macroseismic data, Fitzko et al. (2005) hypothesized a possible source of the 1511 earthquake on a 50 km-long segment of the Idria fault, in Slovenia. The authors proposed NW-ward rupture directivity, with nucleation just to the SE of the Idria town. This hypothesis is also assumed by the Italian Database of Individual Seismogenic Sources (Basilii et al., 2008). Nonetheless, as reported by Fitzko et al. (2005), their model only partly reconciles the actual intensities suffered by many villages in Italy and Slovenia. Indeed, some synthetic intensity data-points differ of up to 2 degrees from the intensities estimated by the historical sources. Moreover, a recent reappraisal of macroseismic data led to a new distribution of seismic source parameters (Cannas et al., 2011), where values are strongly decreased in Slovenia. In particular, the intensity of X assigned to Idria, which was a key point in the Fitzko et al.'s hypothesis, has been removed. Also, Cannas et al. (2011) proposed a new epicenter for the 1511 event in Italy, near Tarcento, and Rovida et al. (2016) defined Mw 6.3.

3 Structural observations and seismic line interpretation

The BFCF is a N-S trending dextral strike-slip fault, traceable from Nimis, to the north, to Cividale, to the south (Fig. 1a, 1b) (Molin et al., 2016). Southwestern of the BFCF a SW-NE trending strike. Interpretation of an industrial seismic line (kindly provided by Eni E&P) allowed us to define the depth geometry of the two structures. (Fig. 3a). The CTV cuts the Quaternary succession and seems to be connected at depth with the BFCF, representing a branching from the same major structure. Two further thrusts (Pramacian thrust and Tanaro thrust, i.e. PNB and TIT in Fig. 1b, respectively) are also interpretable in the CTV footwall, defining the base of the Quaternary. The seismic reflection line also shows the CTV reaching the surface. Moving from this evidence, we focused paleoseismological investigation along the CTV surface trace with the aim of constraining the recent movements of the fault.

4 Morpho-tectonic evidence

The sector between the CTV and BFCF is characterized by a low gradient morphology, with flat terrains interspersed to intersect NE-SW elongated gentle reliefs. The streams run from the NE to the SW, and get sinuous entering this low gradient sector. On the basis of morphological observations, Molin et al. (2014) and Molin et al. (2016) consider BFCF as an active fault, i.e. the northern portion of the Ralsa fault. In particular, in the study area morphostructural evidence such as suspended Quaternary glaciers, diversions and deflections along the Valle, Polesani and Meris rivers and a series of aligned ups (Zanferrari et al., 2008; Pascolini, 2014) suggest dextral horizontal movements of strike slip fault (Fig. 3a).

Moving toward the SW (i.e. on the CTV hanging wall), because of the common water regulations, most of the rivers become rectilinear, getting sinuous again flowing toward the Friulian plain. Such a geomorphic setting suggests the formation of a low gradient sector at the CTV rear, owing to the progressive growth of the reverse tectonic structure. The presence of two back-filled surfaces located at the boundary between the Friulian plain and the reliefs (Fig. 3a) corroborates this interpretation.

Moreover, we found remnants of an old paleo-landscape on top of the ridges located between the CTV and BFCF, represented by almost flat land surfaces carved onto the turbidite bedrock. Intepolation of these top relief land surfaces (Fig. 3b) indicates NE-wards dipping, that is opposite to the present drainage pattern. In order to find further evidence of the recent activity of the CTV, we made a core boring 20 m deep just northward of the trenches site (location in Fig. 2a), above about 5 meters raised fluvial terrace. The borehole (localized at 155 m a.s.l.) was about 2 m thick colluvial sandy silt with thin gravel layers unbedded. Underneath, 6-12 m thick grey-blue lacustrine deposits were cored. The drilling reached the bedrock (i.e. Savorgnano Marls and Arenites) at 15-40 m depth (Fig. 2a).

Comparing the depth of bedrock in the trenches (unit 8) with that in the borehole it appears that the Savorgnano Marls and Arenites crops out at the base of small reliefs made of early Eocene turbidites (Savorgnano Marls and Arenites in Zanferrari et al., 2008a) (Fig. 1b), which have been folded and uplifted by the thrust activity. The CTV and BFCF merge towards the SE (Fig. 1b). Interpretation of an industrial seismic line (kindly provided by Eni E&P) allowed us to define the depth geometry of the two structures. (Fig. 3a). The CTV cuts the Quaternary succession and seems to be connected at depth with the BFCF, representing a branching from the same major structure. Two further thrusts (Pramacian thrust and Tanaro thrust, i.e. PNB and TIT in Fig. 1b, respectively) are also interpretable in the CTV footwall, defining the base of the Quaternary. The seismic reflection line also shows the CTV reaching the surface. Moving from this evidence, we focused paleoseismological investigation along the CTV surface trace with the aim of constraining the recent movements of the fault.

5 Paleoseismological investigations along the CTV

We dug three trenches across a gentle surface scarp (~0.5 m high) seen at the CVT front (Figs. 3a, 5a). The excavations exposed a sedimentary discontinuous sequence, mainly consisting of fluvial and slope deposits that we subdivided into 8 stratigraphic units (Figs. 5, 6) here described:

Unit 1: ploughed soil, made of brownish silt with sparse cm-size polygenic pebbles.

Unit 2: colluvial deposit made of yellowish/brownish sandy silt with sparse cm-size pebbles and charcoal fragments.

Unit 3: colluvial deposit made of brownish massive sandy silt (mostly organised in gravel lenses), charcoal fragments and Fe-Mn concretions.

Unit 4: alluvial deposit made of clast-supported gravel with brownish silt matrix.

Unit 5: colluvial deposit made of massive yellowish-brownish sandy silt containing cm-size polygenic pebbles (mostly organised in gravel lenses), charcoal fragments and Fe-Mn concretions.

Unit 6: colluvial deposit made of yellowish and locally brownish clayey silt with sparse clasts (10 cm maximum size). The deposit underwent pedogenesis which altered the surface of the clasts and the whole sediment structure, and determined the formation of Fe-Mn concretions.

Unit 7: alluvial deposit made of polygenic gravel (cm-size pebbles) laterally grading to clayey silt with sparse pebbles. The pebbles lithology attests that the deposit has been fed by the Tagliamento River catchment.

Unit 8: bedrock represented by the Savorgnano Marls and Arenites (Ypresian, Early Eocene).

Chronologic constraints were provided by radiocarbon dating on charcoals found within the units (dating made by INNOVA SCARL laboratory, Table 1). In this term, it must be underlined that the obtained ages all refer to charcoals, that have been included and transported by the alluvial and colluvial deposits from which we collected them. Therefore, the ages can be similar to each other or sparse. In light of this, hence, we have only considered the most recent ages achieved for each unit in a temporally east-ward for the unit deposition and, thus, for the deformation events.

The trenches show the whole stratigraphic succession warped (upward convexity) in coincidence with the surface scarp (Fig. 2c, 3c). The lowermost Units 7 to 4 show a slightly tighter bending than the upper ones (Units 3 to 1). The very localized bending, the coincidence with the surface scarp, and the sedimentological interpretation rule out that this geometrical feature relates to the original depositional attitude of the layers. This is particularly evident for the fluvial Unit 7, whose attitude is expected to be sub-horizontal. Besides this evidence, each excavation showed other features (fractures and shear planes), described below, that can be associated to events of tectonic deformation (Figs. 3b, 5a, 5b, 5c, and 6a-c).
Trench 1 (Figs. 2b and c; Fig. 5a): unit 8 (turbidite bedrock) showed pervasive cleavage with sub-vertical planes about E-W striking, indicative of localized shearing. Slope deposits of Unit 6 is unconformably overlaid by Unit 5. This suggests progressive deformation of the sequence during deposition, with the formation of angular unconformities, i.e. growth strata. Where the sedimentary sequence displayed warping in coincidence with the surface scarp (~0.5 m high). Units 5 and 4 were also displaced by a low angle shear plane. The displacement indicates reverse kinematics, with sense of motion towards the SW (Figs. 5b, 6a). The deformation was also accommodated by a secondary reverse shear plane with opposite sense of displacement. These features were localized where the turbidite bedrock was affected by shear, thus demonstrating the presence of a well-developed shear zone actively previously.

Trench 2: we identified high angle shear planes that offset Units 4 and 5 with an extensional kinematics, and that were sealed by Unit 3 (Figs. 5d, 2b). The geometrical characteristics of the displaced units and the coincidence with the warped portion of the succession indicate that these shear planes define tension cracking related to bending, interpreted as an endos- related feature (i.e. bending moment fracture) due to a sudden warping event of the paleo-topographic surface. This event occurred after deposition of Unit 4 and before Unit 3.

Trench 3: comparably to trench 2, Units 4 to 6 are disrupted by an extensional fracture which, in turn, was sealed by Unit 3 (Fig. 5c). Moreover, in the easternmost part of the excavation, Unit 6 is brought into lateral contact with Unit 8 (turbidite bedrock) by a sub-vertical shear plane (Figs. 5e, f and g). This structural feature is sealed by unit 5. Furthermore, in this sector the basal contact of Unit 5 of the underlying Unit 8 gets slightly convex upward (Fig. 5e), suggesting that Unit 5 underwent slight uplift after deposition. The described evidence allows distinguishing at least three subsequent events of deformation: the oldest event, named E3, is documented by the displacement of Unit 6 along the sub-vertical shear plane which placed it into contact with the bedrock (seen in trench 3) and was sealed by Unit 5. E3 was thus responsible for the first surface faulting. The angular unconformity that separates Unit 5 from Unit 6 (described in trench 1) also supports the occurrence of E3, as Unit 6 has been deformed and tilted towards the SW before the deposition of Unit 5, determining an onlap geometry. A subsequent event, named E2, is testified by primary and secondary tectonic features, i.e. the reverse fault planes (seen in trench 1), which offset the sequence up to Unit 4, and the fractures (seems to develop after Unit 4 deposition and before Unit 3 deposition, respectively. It is worth noting that notwithstanding extrados fractures are secondary surface effects, their formation requires sudden warping. Otherwise, slow and progressive deformation would have been “absorbed” by a continuous deformation of the sediments. The occurrence of E2 is also suggested by the upward bending of Unit 5 overlying the bedrock (Fig. 5e).

The latest event, named E1, is documented by the gentle warping of Units 3 to 1 (seen in all of the trenches), which matches the bending radius of the surface scarp. As units 3–1 display a lower bending than the underlying units 7–4, it testifies that the oldyfes that the sediments underlay a larger, cumulative deformation produced by E2 + E1.

The radiocarbon ages allow us to constrain E3 before the 5th millennium B.C., based on the ages obtained from charcoals collected within Unit 5, which sealed the event. As for E2 it may be constrained between the 5th and 6th century AD. In particular, charcoals found within Units 4 and 3 – the former displaced by E2 and the latter sealing E2 – provided a radiocarbon age ~660 AD. Even if the radiocarbon age obtained from the charcoal collected in Unit 3 represents a horsetail point query for the unit deposition, the similarity between its age and the one of the charcoal collected in Unit 4 (i.e. 650 AD) allows to hypothesise that E2 likely occurred around this period. Lastly, E1 took place after the 13th century AD, based on the youngest radiocarbon age of charcoals found within Unit 2.

6 Discussion and concluding remarks

We performed multiple investigations on the Colle Villano Thrust (CVT) and the Borgo Farni-Cividale strike slip fault (BFCF). These structures located at the intersection between the Slovenian directed strike-slip active shear zone and the active external thrust front of the eastern Southern Alps. Our main goal was to investigate how active tectonic deformation distributes in this region of kinematic transition and to improve the seismotectonic knowledge of the area, still incomplete in some important aspects, such as the causative fault of the largest earthquake of the study region, occurred on 1511.

Field observations coupled with the interpretation of a commercial seismic reflection line indicate that the BFCF and CVT gave rise to a major NW-SE-to-NW-SEE striking transpressive shear zone that accommodates reverse-oblique deformation. This interpretation fits the GPS time series available for the area, which define main N-S trending shortening. Therefore, a significant horizontal shear component is inherently expected on structures obliquely oriented with respect to the N-S trending regional strike, i.e. the axis of maximum compression. In tectonic terms, the following evidence suggest that they are the surface expression – as fault splays – of a complex fault system that accommodates transpressive tectonic deformation affecting this region: i) the narrow spacing (in plan view) between the two structures (towards the south, the two structure merge, as we depicted in Fig. 3a); ii) the deep structural arrangement, achieved by the interpretation of the provided seismic lines, which suggests that the Colle Villano Thrust is a rather superficial structure that connects to the Borgo Farni-Cividale Fault and does not cut across it, and iii) the transpressive deformations we observed along the trench walls testify by both compressive folds and deformations, and sub-vertical strike-slip shear planes, point to the Borgo Farni-Cividale Fault as major strike-slip fault, which accommodates the horizontal transpressive deformation, and the Colle Villano Thrust as a synthetic splays that accommodates the contractional component. The evidence of active deformation we found along the CVT and the available kinematic data on the tectonic history of the area suggest that the transpressive slip probably occurs on the investigated structures, that is, mainly strike-slip on the BFCF and mainly compressive along the CVT (Fig. 7).

Slip partitioning on oblique of oblique structures has been observed in many cases from across the world, both as for the coesismic and long-term displacements (e.g. Wesnousky and Jones, 1994; Walker et al., 2003; King et al., 2005). In tectonic-structural perspective, our inferences match the geodetic observations made by Devoe et al. (2011) who, based on GPS time series, issued a certain amount of horizontal shear in this region. Moreover, Montrasio and Marzocchi (2011) show that the contemporary stress map of Italy defines that this region located at the transition between strike-slip faulting and thrust faulting, and transpressive deformation is expected.

Trench investigations across the CVT attest to at least three activation events. The presence of low angle reverse faults, the displacement of some stratigraphic units along sub-vertical shear planes and the occurrence of secondary extrados fractures are indicative of sudden deformation events along the CVT, responsible for primary surface faulting. In detail, chronostratigraphic data attested the penultimate event E2 likely around the 6th century AD and the last event E1 after the 15th century AD. E1 has been responsible for bending, that caused ~0.8 m in high (minimum) surface scarp.

From a seismotectonic viewpoint, the only known post-15th century AD earthquake of the area that has had a magnitude large enough to result in such a significant deformation is that occurred in 1511. In this perspective, basing on the regressions of Wells and Coppersmith (1994), the magnitude of the earthquake, i.e. 6.3 (Canasius et al., 2011; Rovida et al., 2016) is consistent with the activation of the 25 km long CVT-BFCF system. Therefore, the CVT-BFCF system appears as a very plausible candidate for having played a primary role in the seismogenic process of the 1511 seismic event (Fig. 3). Ultimately, this study raises significant issues on a potential major seismogenic source of a region where interestismic coupling suggests elastic strain is building up at seismogenic depths which will be released in future large earthquakes.

(Cheloni et al., 2014; Serpelloni et al., 2016).

Author contribution

Emmanuel Falcucci, first and corresponding author, led the paleoseismological investigations, manuscript writing and discussed the seismotectonic interpretation; Eliana Poli and Adriano Zanferrari performed the geological, morphological and structural analysis and interpretation of the reflection seismic line; Giancarlo Scardia contributed to the stratigraphic interpretation of the trench walls; Giovanni Piairo contributed to the trenching activity; seismotectonic interpretation was discussed and shared with Fabrizio Galadini. All of the authors discussed the paleoseismological data and general aspects concerning the regional tectonic framework.
References


Miklar, I.: Krvnja zgradba idrijsko-Zirovskega otamila, Geologija 12, 5-72, 1969.


40

Cofigura captions

Figure 1: a) Tectonic map of the eastern Southern Alps and western Dinarides (modified from Zanferrari et al., 2013). Adriatic CCW rotation (O’Agostino et al., 2008). inset, BFCF: Borgo Faris – Cividale thrust; CVT: Colle Villano thrust; GK: Gemona-Kobarid thrust; IA: Idrja-Ampozzo fault; PL: Periadriatic lineament; RP: Ravne–Puzan fault; RS: Ricci fault; TL: Trento–Trieste thrust; TN: Tarvisio nappe thrust front (Placeto et al., 2010). Red stars: epicenters of the strongest historical and instrumental events (Zanferrari et al., 2010) and the related focal plane solutions. Italian boundary, thin dashed line. Hill–plateau boundary, dotted line. B: Geological map of the study area (modified from Carabò, 2000; Zanferrari et al., 2008a; 2013): PRM: Premariacco thrust. Paleoseismological trenches site, black star. Stereographic projection (lower hemisphere) of catttico discontinui collected on the CVT, inset.

Figure 2: a) Reflection seismic section crossing the study area; b) Interpretation line drawing of the reflection seismic section (A–A’ in Fig. 4b). Q: Quaternary; UM: Middle–Upper Miocene Molasse; LME: Cenozoic Group (Lower–Middle Miocene); PLYV: Upper Cretaceous/Lower Eocene p.p. turbidite units.

Figure 3: a) Digital elevation model (supplied by Friuli Venezia Giulia Region) of the study area. Faults: BFCF; CVT; PRM; Premariacco thrust; BP: Borgo Faris village. Back–lifted surfaces at the Racciusana and Poiana valleys outlet, red arrows. In pink the two interrupted Quaternary plains cut off by the BFCF. The black square is detailed in inset: site of the core logging, yellow dotted line of the paleoseismological trench A, violet lines, BB’, geological section of fig. 4. Red line: seismic line of fig. 2. b) The NE dipping paleolandscape carved by the turbidite bedrock (yellow dotted line between the BFCF and the CVT. Point of view in Figure 3a (green eye).

Figure 4: Geological crosssection across the core logging and the paleoseismological trenches. The light green lacustrine clay doesn’t crop out in the trenches but on-laps the growing antcline built in the turbidite bedrock (light blue). Dark green: alluvial and colluvial deposits; light green: lacustrine deposits; blue: turbidite bedrock. In the lower panel the stratigraphic log and pictures of the borehole. Red asterisk indicates the location of the sample which gave a radiocarbon age of 40,000 years. Borehole location: 2389338E, 5147358N/51527.001.
Figure 5: (a) Raschiusana valley outlet, north of Magredis. Trenches location, black rectangle. (b) Trench 1, northern wall; reverse fault planes (white dashed lines in inset). (c) Trench 1, northern wall; bending (marked by white triangles) of the stratigraphic units in coincidence with the surface scarp (black triangles). (d) Trench 2, southern wall; fracture planes (indicated by white arrows) displacing the units (attitude marked by black and yellow dashed lines). (e) Trench 3, southern wall; shear plane (white arrows) displacing the upward warped stratigraphic units (black and white dashed lines). (f) Trench 3, northern wall, high angle shear plane (white arrows) placing into contact the bedrock (unit 8) with the late Quaternary units.

Figure 6: Trench walls, stratigraphic schemes. Units: 1, soil; 2, 3, 5 and 6, colluvial deposits; 4 and 7, fluvial deposits; 8, turbiditic bedrock.

Figure 7: Geological cross section based on the seismic line of Figure 1c and 3-D scheme (lower panel) of the BFCF-CVT system. Q: Quaternary; UM: Middle-Upper Miocene Molasse; LM: Cavone Group (Lower-Middle Miocene); FLY: Upper Cretaceous – Lower Eocene turbiditic sequence. TN: Tanovo Nappe front (according to Placer et al., 2010).

Figure 8: Damage distribution of the 1511 earthquake from CPTI (Rovida et al., 2016); red lines, BFCF-CVT system.

Table 1: Detail of the radiocarbon dating performed on the collected charcoal (calibration curve by Reimer et al., 2013).