Journal metrics

Journal metrics

  • IF value: 4.165 IF 4.165
  • IF 5-year value: 4.075 IF 5-year 4.075
  • CiteScore value: 4.28 CiteScore 4.28
  • SNIP value: 1.501 SNIP 1.501
  • SJR value: 1.060 SJR 1.060
  • IPP value: 4.21 IPP 4.21
  • h5-index value: 29 h5-index 29
  • Scimago H index value: 27 Scimago H index 27
Discussion papers
https://doi.org/10.5194/sed-7-909-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/sed-7-909-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 06 Mar 2015

Research article | 06 Mar 2015

Review status
This discussion paper is a preprint. A revision of the manuscript for further review has not been submitted.

Polyphase evolution of a crustal-scale shear zone during progressive exhumation from ductile to brittle behaviour: a case study from Calabria, Italy

E. Fazio, G. Ortolano, R. Cirrincione, A. Pezzino, and R. Visalli E. Fazio et al.
  • Università degli Studi di Catania, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Corso Italia 57, 95129 Catania, Italy

Abstract. Mylonitic rocks involved within a polyphase crustal-scale shear zone, cropping out in the Aspromonte Massif (Calabria, Italy), has been investigated to reveal the meso- and micro-structural evolution (from ductile- to brittle-type deformation) occurred during exhumation trajectory. A relatively small area (about 4 km2) has been selected in the central-eastern part of the massif to constrain the sequence of the structural features from the earliest ones (Hercynian in age), almost totally obliterated by a pervasive mylonitic foliation (plastic regime), up to recent ones, consisting of various sets of veins typical of semibrittle to brittle regime. The former ductile evolution was followed by a compressive thin-skinned thrusting stage developed during the Apennine phase of the Alpine Orogeny, interested by a second brittle stage, consistent with the switching from compressive to extensional tectonics. This last stage accompanied the final exhumation process causing the activation of regional scale normal faults, which partly disarticulated previous mylonitic microstructures. A suite of oriented specimens were collected and analyzed to complete the deformational history already recognized in the field. Quartz c axis orientation patterns confirm the greenschist facies conditions of the former ductile exhumation stage with a dominant top-to-NE sense of shear. Microstructural investigations highlighted the progressive development from plastic- to brittle-type structures, allowing to constrain each step of the multistage exhumation history, and to establish the relative timing of the stress field variation causing thrusting and subsequent normal faulting. Obtained results support a continue compressional exhumation of this sector since the opening of Tyrrhenian basin (10 Ma).

E. Fazio et al.
Interactive discussion
Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Interactive discussion
Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
E. Fazio et al.
Viewed  
Total article views: 639 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
372 238 29 639 54 17 27
  • HTML: 372
  • PDF: 238
  • XML: 29
  • Total: 639
  • Supplement: 54
  • BibTeX: 17
  • EndNote: 27
Views and downloads (calculated since 06 Mar 2015)
Cumulative views and downloads (calculated since 06 Mar 2015)
Cited  
Saved  
Discussed  
No discussed metrics found.
Latest update: 21 Nov 2018
Publications Copernicus
Special issue
Download
Citation
Share