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Abstract

Exchange records of terrestrial mammals can be combined with available tectonic
and climatic documents to evaluate major biological and environmental events. Previous
studies identified four carnivoran dispersals between Eurasia and North America in the
Neogene, namely, at ~20 Ma, 13-11 Ma, 8-7 Ma, and ~4 Ma. In order to evaluate driving
mechanism of these biological events, we collected, compared and analyzed a large number of
published records. The results indicate that the carnivoran dispersal from Eurasia to North
America at ~20 Ma was probably caused by intense tectonic movements in Asia. During
13-11 Ma, global cooling possibly drove the mammal exchanges between Eurasia and North
America. By comparison, the carnivoran dispersal from Eurasia to North America at 8-7 Ma
was probably caused mainly by the tectonic movements of the Tibetan Plateau. Similar to
during 13-11 Ma, the carnivoran exchanges between Eurasia and North America at ~4 Ma
were possibly driven by global cooling. The tectonic movements in Asia would change
vegetation growth and thus herbivore distribution, which would drive carnivore dispersal out
of Asia. Global cooling and its induced deterioration of survival environment would bring
more pressure to the mammal fauna in Eurasia than before. In the meanwhile, global cooling
made relatively high latitudes and elevated places unfit for living throughout winter. These
factors prompted the mammal fauna dispersal between Eurasia and North America, which

needs to be examined in the future.

Keywords: Carnivoran dispersal between Eurasia and North America; Neogene; Climate

change; Tectonic movement; Forcing mechanism
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1. Introduction

Widely distributed terrestrial mammals were highly mobile during the Cenozoic Era.
They exchanged frequently between the mainland commonly corresponding to global and
regional environmental changes, such as significant climate changes, major block
reorganizations, and relevant biogeographic changes (e.g. Qiu, 2003; Wang et al., 2013). Thus
exchange records of terrestrial mammals can be combined with available tectonic and climatic
documents to evaluate major biological and environmental events, especially about
occurrence time and driving mechanism (e.g. Flynn and Swisher III, 1995; Eronen and Rook,
2004; Kohn and Fremd, 2008; Eronen et al., 2012; Wang et al., 2013). However, such study is
usually limited by research advances of both aspects: major exchange events of mammals and
remarkable environmental events.

A reliable reconstruction of faunal exchange history depends heavily on solid support
from both the abundant fossil records and a stable classification. As migrants from Eurasia to
America, Repenning (1967) listed 9 genera (Simocyon, Indarctos, Agriotherium, Plionarctos,
Lutravus, Eomelivora, Plesiogulo, Lutra, and Machairodus) from the Hemphillian mammal
faunas and 7 genera (Lynx, Trigonictis, Canimartes, Enhydra, Enhydriodon, Ursus, and
Chasmaporthetes) from the Blancan mammal faunas. This is an early attempt though with
some degree of uncertainty. Similar endeavors were made by Korotkevitch and Topachevskii
(1986) and by Kurtén (1986). Later, Tedford et al. (1987) presented 38 North American
Neogene carnivorans as exotic taxa and most of them were believed to have migrated from

Eurasia. This contributed greatly to our understanding of Neogene mammal faunal exchange
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history. Furthermore, considerable progress has been made in the carnivoran fossil records
and stable classification since Tedford et al.’s fundamental contribution (Tedford et al., 2004).
Based on published fossil records, Qiu (2003) identified three major carnivoran dispersal
waves of filter-bridge type between Eurasia and North America in the Neogene. The first
occurred at ~20 Ma and the carnivorans migrating from Eurasia to North America included
Cynelos, Ysengrinia, Amphicyon, Cephalogale, Phoberocyon, Ursavus, Potamotherium, and
Proailurus (Fig. 1). The second wave occurred at 7-8 Ma and the carnivorans migrating from
Eurasia to North America included Indarctos, Agriotherium, Simocyon, Eomellivora,
Plesiogulo, and Machairodus. The last wave took place at ~4 Ma and the Eurasian emigrants
found in North America are Ursus, Parailurus, Lynx (?), Felis (?), Homotherium, and
Chasmaporthetes (Tseng et al., 2013). In the meantime, Megantereon and Pannonictis
migrated from North America to Eurasia. In addition, at about 13 Ma, Leptarctus migrated
from North America to Eurasia while Sansanosmilus and Plithocyon migrated from Eurasia to
North America (Qiu, 2003; Wang et al., 2003a). Given that Asia and Western North America
became connected by land across the Bering Sea in the Mid-Cretaceous and the continents
remained joined by the Bering land bridge until the Pliocene (Marincovich and Gladenkov,
1999; Sanmartin et al., 2001), these migrating events provide a chance to untangle major
environmental events and palacogeographic changes during the Late Cenozoic (Fig. 1).
Recently, a growing body of advance has been made on uplift of the Tibetan Plateau
and palaeoenvironmental evolution in East Asia during the Late Cenozoic (e.g. Jiang et al.,
2007, 2010; Nie et al., 2008; Sun et al., 2010; Zhang et al., 2010; Jiang and Ding, 2010; Lin et

al., 2010, 2011, 2015; Qiang et al., 2011; Miao et al., 2011, 2012; Nie et al., 2014; Ma and
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Jiang, 2015; Xu et al., 2015; Lu et al., 2015). This makes it possible for us to compare and
analyze land mammal exchange events and significant tectonic and climatic events with an
aim to evaluate occurrence timing and driving mechanism of major biological and
environmental events during the Late Cenozoic. Accordingly, in this study, we systematically
collect tectonic and climate records occurring at ~20 Ma, 13-11 Ma, 8-7 Ma and ~4 Ma in
East Asia, and compare with major carnivoran exchange events between Eurasia and North
America. This will help us to gain insight about driving mechanism behind major land
mammal exchange and tectonic and climate evolution in East Asia during the Late Cenozoic
though the Neogene carnivoran (and mammalian) fossil records in Asia are possibly less

complete than those of Europe and North America (Wang et al., 2013).

2. Carnivoran dispersal from Eurasia to North America at ~20 Ma
probably caused by tectonic movements

Evidence for significant exhumation and deformation of the Himalaya-Tibetan Plateau
is widespread during the 25-20 Ma (e.g. Harrison et al., 1992a; Zhang et al., 2010; Xiao et al.,
2012; Lu et al., 2015). The onset of exhumation and deformation is also reported at 25-20 Ma
in the Tianshan, Altyn Tagh, Western and Eastern Kunlun regions (e.g. Jolivet et al., 2001;
Sobel et al., 2006). In order to determine the most significant tectonic event during the
Mid-Tertiary, we review and analyze a number of studies on the tectonic movements in East
Asia (Fig. 2A and Table 1).

Many studies focused on dating the onset of accelerated crustal melting, uplift, and

deformation of the Himalaya and the southern Tibet, commonly centering on ~20 Ma (e.g.
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Zeitler, 1985; Maluski et al., 1988; Hubbard and Harrison, 1989; Noble and Searle, 1995;
Hodges et al., 1996; Copeland et al., 1996; Arita et al., 1997; Lee et al., 2000; Najman and
Garzanti, 2000; White et al., 2001; Murphy et al., 2002; Tobgay et al., 2012). Sedimentary
records on the basin flanks of the Himalaya and out into the Indian Ocean generally show a
similar change around 20 Ma. About 69% of the Himalayas south of the Indus-Yarlung suture
zone, or about 6.7x10° km’, have been denudated since ~20 Ma (Einsele et al., 1996).
Records of isotopic ratio changes through time provide another window to observe the
significant tectonic or environmental change in Asia around 20 Ma. The steepest rise in the
strontium isotopic ratio (*’St/**Sr) of seawater during the Cenozoic was from 20 to 14.4 Ma
(Hodell et al., 1991; Richter et al., 1992; Hodell and Woodruff, 1994). Similarly, lithium
isotopes in seawater (8'Lisw) increased abruptly at ~20 Ma, then generally decreased from 20
to 15 Ma (Misra and Froelich, 2012). Hence, the Himalaya and southern Tibet was
significantly uplifted and eroded at ~20 Ma. This conclusion is consistent with a marked
slowdown in the convergence rate between India and Eurasia by more than 40% since 20 Ma
(Molnar and Stock, 2009).

Modeling of apatite fission track data from the Songpan-Ganzi Fold Belt suggests that
exhumation accelerated ~20 Ma in East Tibet, consistent with the mid-Tertiary timing inferred
for reactivation of the Wenchuan-Maoxian Fault from zircon fission track data (Arne et al.,
1997). Moreover, ages on the Anning transect suggest an early initiation of rapid cooling (ca.
20 Ma, Clark et al., 2005). Thus significant tectonic movements occurred along the eastern
margin of the Tibetan Plateau at ~20 Ma.

Along the northeastern margin of the Plateau, several basins also record significant
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tectonic changes around 20 Ma, such as the transitions of sedimentary facies in the Lanzhou
and Qaidam Basins (Yue et al., 2001; Qiu et al., 2001; Lu and Xiong, 2009; Lu et al., 2015),
the onset of widespread contractional deformation in the Gonghe Basin (Craddock et al., 2011;
Lu et al., 2012), the initiated deposition of Xunhua Basin (Hough et al., 2011), and the
transition to alluvial facies in the Hualong Basin (Lease et al., 2012). Similarly, basins and
bounding mountain ranges on the northern margin of the Plateau also experienced increased
deformation around 20 Ma, such as an unroofing event in the Western Kunlun range (Mock et
al., 1999; Li et al., 2007, 2008). Thrusting in the southern Tianshan range probably initiated
~20 Ma (Huang et al., 2006). Even farther north, deformation is also recorded in the Junggar
Basin around 20 Ma (Ji et al., 2008; Tang et al., 2011, 2012).

Together, these studies suggest that the most significant tectonic activities along the
northern, the southern, and the eastern margins of the Plateau are temporally synchronous, at
~20 Ma, perhaps as a regional delayed response to the Indo-Eurasian collision (Sun and
Zheng, 1998; Zhang et al., 2010). In contrast, no obvious climate changes in East Asia are
observed at ~20 Ma. For example, in the Kuche Basin of Xinjiang Province (Figs. 3A and B,
Li et al., 2006; Huang et al., 2006) and the Qaidam basin of Qinghai Province (Figs. 3C-F, Lu
and Xiong, 2009; Lu et al., 2014), Northwest China, most sedimentary proxies do not indicate
a clear climate change at ~20 Ma, with the exception of an SUS increase of the sediments in
the Kuche Basin (Fig. 3B), probably because of provenance change caused by tectonic
activities on the Tian Shan at ~20 Ma (Huang et al., 2006). Widespread deformation in
Central to East Asia was driven by the intense uplift of the Himalaya-Tibetan Plateau at ~20

Ma (Fig. 2A and Table 1). Such a widespread tectonic movement must have had a large
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impact on the faunal distribution in Asia. On the one hand, the tectonic deformation would
change vegetation growth (Lu et al., 2004a, 2008; Wu et al., 2007; Dupont-Nivet et al., 2008)
and thus herbivore distribution, which would drive carnivore dispersal out of Asia. On the
other hand, the tectonic deformation itself would have changed many faunal habitats and
scared the fauna out of Asia and drove them out of Asia. Compared with Asia at ~20 Ma,
North America seemed relatively quiet in tectonics and thus these fauna just ran from Asia to

North in one way instead in both (Fig. 1).

3. Mammal exchanges between Eurasia and North America during 13-11
Ma possibly driven by global cooling

At about 13 Ma, Leptarctus migrated from North America to Asia while
Sansanosmilus migrated from Eurasia to North America (Fig. 1, Qiu, 2003). At 11.1 Ma
(Garces et al., 1997) or 11.5 Ma (Sen, 1997), Hipparion migrated from North America to
Eurasia. In the Linxia Basin, Gansu Province, Northwest China, the average 8'%0 values of
tooth enamel of rhinos shows a large positive shift during 13-11 Ma (Wang and Deng, 2005),
well correlated with the substantial 'O enrichment at 12 Ma from lacustrine carbonates in
the same basin (Dettman et al, 2003). The latter was believed to reflect a shift to more arid
conditions and thus a major reorganization of atmospheric circulation patterns possibly caused
by a significant uplift of the Tibetan Plateau. Such inference was then supported by several
subsequent studies from the Dahonggou section (changes in sedimentation facies and SUS,
Lu and Xiong, 2009), the Wulan section (changes in sedimentation facies and mean

declination, Lu et al., 2012), and the Huaitoutala section (changes in the 8'%0 of lacustrine
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carbonates, Zhuang et al., 2011) in the Qaidam Basin. That is to say, these regions in the
northeast Tibetan Plateau did experience significant tectonic movements at ~12 Ma (Fig. 2B
and Table 2).

Nevertheless, it is noteworthy that the East Antarctic Ice Sheet expanded significantly
since 14 Ma and initiated the Mid-Miocene Climate Transition (MMCT), probably causing a
marked cooling in East Asia during 14-11 Ma (Fig. 4A, Jiang and Ding, 2008; Miao et al.,
2012). This aroused a wide curiosity about whether the Tibetan uplift or the global cooling
has been the first-order driver controlling stepwise drying in Asia (e.g. Jiang et al., 2008; Lu
et al., 2010; Zhuang et al., 2011; Miao et al., 2012; Lu and Guo, 2014). In order to explore the
evolution of climate through the MMCT, Jiang et al. (2007, 2008) analyzed multiple proxies
from the 2900-m-thick fluviolacustrine sediment sequence at Sikouzi, Ningxia, China, such as
pollen humidity index (Fig. 4A), redness (Fig. 4B), Lightness (Fig. 4C), Susceptibility (Fig.
4E), TIC, and TOC. The results indicate that the palaeoclimate in East Asia has got cooler and
drier since 12-11 Ma. This climate change also left imprints in many other regions of the
world, probably linked with the marked expansion of the East Antarctic Ice Sheet and
resultant positive feedbacks of vegetation change and greenhouse gas fluctuations (Jiang et al.,
2008). This inference is supported by a good correlation of the thick eolian silt sequences of
Asian drying from the Early Miocene to Late Pleistocene with global cooling (Lu et al., 2010).
Later, Zhuang et al. (2011) attributed the isotope-constrained intensified aridity in the Qaidam
Basin at 12 Ma to retreat of Paratethys from central Asia, blocking moisture-bearing air
masses by the elevated south-central Tibetan Plateau, and enhanced isolation and outward

growth of the northern Tibetan Plateau. In these contexts, Miao et al. (2012) reviewed the
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climate records from five separate regions (Europe, high-latitude Asia, East Asia, South Asia,
Central Asia) of Eurasia during 17-5 Ma and compared them with the global deep-sea oxygen
isotope records. The results indicated that compiled moisture proxy data from the four regions
surrounding Central Asia co-varied and correlated with each other (Miao et al., 2012),
supporting the inference that global cooling provided a dominant driving factor for the drying
of Eurasia (Jiang et al., 2008; Lu et al., 2010; Lu and Guo, 2014). Accordingly, global cooling
and its induced deterioration of survival environment brought more pressure to the mammal
fauna in Eurasia than before. Vegetation decline constrained availability of various herbs and
shrubs for the herbivores, presumably having a significant impact on the carnivores’ living.
Global cooling made relatively high latitudes and elevated places unfit for living through
winter. These factors prompted the mammal fauna dispersal between Eurasia and North
America. It is noteworthy that mammal fauna dispersal during 13-11 Ma has both directions,
1.e., from Eurasia to North America and from North America to Eurasia (Fig. 1), suggesting
that dispersal pressure probably came from global cooling instead of tectonic movements in
the northeastern part of the Tibetan Plateau. Accordingly, global cooling is believed to have
been responsible for the mammal exchanges between North America and Eurasia during
13-11 Ma.

Noticeably, both the climate and tectonic records and the observed mammal fauna are
relatively few in East Asia during the MMCT. With further investigations and more climatic
and tectonic records published in the future, the timing interval of mammal exchange between

North America and Eurasia during the MMCT would be narrower and clearer.
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4. Carnivoran dispersal from Eurasia to North America at 8-7 Ma probably
caused mainly by the tectonic movements of the Tibetan Plateau

The pollen record from Guyuan, Ningxia, China, indicates that the East-Asian summer
monsoon declined significantly from 14.25-11.35 Ma and kept weak since 11.35 Ma (Fig. 4A,
Jiang and Ding, 2008). This is well consistent with marked development of herbs and shrubs
in the vast region north to the Yangtze River of South China during the late Middle to Late
Miocene as synthesized by Jiang and Ding (2009), probably correlated with evident global
cooling caused by significant expansion of the East Antarctic Ice Sheet during the MMCT (e.g.
Woodruff and Savin, 1989; Flower and Kenett, 1994; Ohta et al., 2003; Shevenell et al., 2004;
Zachos et al., 2001, 2008). Following the MMCT, the climate evolution in East Asia during
11-8 Ma is pivotal to understanding the fauna exchange between North America and Eurasia
at 8-7 Ma.

In Ningxia Province, the redness (a*) record of the Sikouzi fluviolacustrine sediments
showed a slight decrease from 11 to 8 Ma (Fig. 4B), possibly reflecting a declining oxidation
caused by global cooling (Jiang et al., 2007, 2008). Such a declining oxidation increased
magnetic minerals in the sediments, which is mirrored as a continuous increase of SUS values
from 11 to 8 Ma (Fig. 4E, Jiang et al., 2008). The Sikouzi lightness (L*) record during 11-8
Ma maintained higher values than previously (Fig. 4C), implying high contents of carbonate
in sediments and thus a more arid environment (Jiang et al., 2008). Its slight decreasing trend
from 11 to 8 Ma is possibly related to the evident increase in sedimentation rate during this
period, especially during the late period (Jiang and Ding, 2008). Such inference is confirmed

by an evident increase of SUS during this period (Fig. 4E). Furthermore, the pollen record

11
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from the Linxia Basin on the northeastern margin of the Tibetan Plateau indicates that, during
11-8 Ma, the conifers showed a steep decline while the herbs and shrubs increased
significantly (Ma et al., 1998), implying a rapid drying environment. Similarly, the coniferous
pollen in the Qaidam Basin decreased while the xerophytes increased during 11-8 Ma (Miao
et al., 2011), indicating that drying in the Qaidam intensified during this period.

Therefore, it is clear that the climate evolution in East Asia during 11-8 Ma is
characterized by slow cooling and gradual drying. This is well correlated with further
enrichment of the integrated 8'*0O of marine benthic foraminifera (Fig. 5A, Zachos et al., 2008)
and the significant sea-level fall during this period (Fig. 5B, Haq et al., 1987). Such a global
declining climate during 11-8 Ma probably resulted in stepwise enhancement of the East
Asian winter monsoon (transporting relatively coarse dust particles) and of the westerlies
(transporting relatively fine dust particles), providing important transporting agents and arid
geographic locations for widespread dust accumulation in North China and even the western
Pacific since ~8 Ma.

Previous studies indicate that the Tibetan Plateau experienced significant tectonic
movements at ~8 Ma (e.g. Pan and Kidd, 1992; Harrison et al., 1995; Kirby et al., 2002; Fang
et al., 2005; Zheng et al., 2006; Lease et al., 2011; Duvall et al., 2012). As shown in Table 3
and Fig. 2C, we collected 18 records revealing that tectonic movements occurred at 17 sites in
and around the Plateau from 8.5 to 7.5 Ma. They are mainly distributed in the eastern and
northeastern Tibetan Plateau, reaching up to 11 sites. By comparison, only 4 sites of tectonic
movements were observed in the Himalaya and southern Tibet. One location in the northern

Plateau documented tectonic movement at this time. Accordingly, it is speculated that tectonic

12



265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

activities in the eastern and northeastern Plateau generated large quantities of dust materials
since 8.5-7.5 Ma and provided adequate material sources for widespread dust accumulation in
North China and even the western Pacific. This is probably responsible for the significant
increase of eolian deposit from 4 sites during 14-7.5 Ma to 14 sites during 7.5-3.6 Ma in
North China (Lu et al., 2010). Furthermore, at some sites, red clay overlies much older rock
of a different type, such as Lingtai (7.05 Ma, Ding et al., 1998a, 1999), Xifeng (7.2 Ma, Sun
et al., 1998), Jiaxian (8.35 Ma, Qiang et al., 2001), and Chaona (8.1 Ma, Song et al., 2007).
Almost at the same time, both sedimentation rate and mean grain-size of sediments increased
clearly in North China (e.g. Lu et al., 2004b, 2007, Guo et al., 2002; Qiao et al., 20006).
Therefore, significant environmental events characterized by widespread dust
accumulation occurred at 7-8 Ma in North China and the western Pacific (e.g. Ding et al.,
1998b; Rea et al., 1998; Sun et al., 1998; Pettke et al., 2000; Guo et al., 2001; Qiang et al.,
2001; Nie et al.,, 2014). Similarly, such events contain integrated information on global
cooling and significant tectonic movements of the Tibetan Plateau. Because both of them
generated uncomfortable environment for mammal living, they probably contributed to
mammal dispersal between Asia and North America. Importantly, widespread dust
accumulation at 7-8 Ma would significantly change vegetation growth and faunal habitats in
North China, which would bring more pressure to them than before. It is observed that at 7-8
Ma carnivore just dispersed from Eurasia to North America instead in both directions (Fig. 1).
Given that global cooling should have similar impact on both regions, tectonic movements of
the eastern and northeastern Tibetan Plateau at 7-8 Ma should have made a greater

contribution for carnivore dispersal from Eurasia to North America than continuous global
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cooling as discussed above (Lu et al., 2004a, 2008; Wu et al., 2007; Dupont-Nivet et al.,

2008).

5. Carnivoran exchanges between Eurasia and North America at ~4 Ma
possibly driven by global cooling

Previous studies indicate that climate was relatively warm and wet during the Early
Pliocene and declined during the Late Pliocene, especially in East China (e.g. Yu and Huang,
1993; Ding et al., 2001; Guo et al., 2004; Wu et al., 2006; Jiang and Ding, 2009; Xiong et al.,
2010). This arouses a wide interest in the beginning of climate recession during the Late
Pliocene. The grain-size record of the Sikouzi section at Guyuan, Ningxia, China suggests
that Md (median grain size) ranged from 1.6 to 47.1 um with a low mean value of 10.9 pm
during 7.0-4.2 Ma but oscillated with large amplitudes from 2.2 to 401.2 um (average 31.0
um) during 4.2-0.07 Ma (Fig. 4D, Jiang and Ding, 2010). Similarly, the Sikouzi SUS curve
oscillated slightly (2.6-22.4, mean 12.7) during 7.0-4.2 Ma. Since 4.2 Ma, the amplitudes
increased abruptly (1.0-31.6, mean 14.0) with a distinct increase from 4.2 to 3.0 Ma, probably
reflecting enhancement of magnetite concentration in sediments influenced by temperature
decline and aridity increase (Fig. 4E, Jiang et al., 2008). The Sikouzi L* value was generally
less than 61.6 (52.8-65.7, mean 59.8) during 7.0-4.2 Ma and higher than 61.6 (56.7-67.6,
mean 62.4) during 4.2-0.07 Ma, possibly indicating an increase in carbonate content and thus
growing aridity of the sedimentation environment (Fig. 4C, Jiang et al., 2008). The Sikouzi
redness (a*) was generally high (8.1-12.9, mean 10.5) during 7.0-4.2 Ma and decreased

distinctly (8.0-13.2, mean 10.1) during 4.2-0.07 Ma, possibly implying a stepwise decrease in
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temperature influencing the oxidation of iron-bearing minerals in arid to semi-arid regions
(Fig. 4B, Jiang et al., 2007, 2008). These records and their inferred climate changes have
similar responses for the Lingtai section (Ding et al., 1998a, 2001; Sun et al., 1998), the
Xifeng section (Guo et al., 2001, 2004; Wu et al., 2006), the Chaona section (Bai et al., 2009),
and the Baishui section (Xiong et al., 2002, 2003, 2010) in the Chinese Loess Plateau (CLP).

What’s more, the climate change at ~4 Ma also left imprints in the low-latitude South
China Sea (SCS) and the high-latitude Lake Baikal. The L* of sediments at ODP Site 1148 in
the northern SCS was high (41.2-58.0, mean 50.3) during 7.0-4.0 Ma and declined distinctly
(54.8-35.2, mean 44.5) since 4.0 Ma, suggesting a decrease in carbonate content, increase in
terrigenous sediments and a lowering of sea level controlled by global cooling (Hay et al.,
1988; Tian et al., 2008). This inference is supported by the benthic 8'°0 record of the same
core (Tian et al., 2008) and the grain-size record at ODP Site 1146 (Wan et al., 2007).
Similarly, oscillating amplitude of the grain-size record of core BDP98 (600 m) from
Academician ridge (53°44°40"N, 108°24°30"E) in central Lake Baikal was much smaller
during 7.0-4.0 Ma and increased afterwards, especially after 2.75 Ma (Kashiwaya et al., 2001,
2003). This climate recession since ~4 Ma in the Northern Hemisphere agrees well with the
stepwise enrichment of the integrated global 8'°0 record of marine benthic foraminifera since
~4 Ma (Fig. 5A, Lisiecki and Raymo, 2005; Zachos et al., 2008), and is also correlated with
strengthened periodicity of sea-level fluctuations since ~4 Ma (Fig. 5B, Haq et al., 1987; Nie
et al., 2008).

In general, the above data suggest that Late Cenozoic global climate probably entered

a new state at ~4 Ma. The factor responsible for this significant climate shift deserves further
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investigation. As shown in Fig. 2D and Table 4, the change in depositional facies and increase
in sedimentation rate of the Yecheng section in the western Kunlun Mountains reflects the
main uplift of the northwestern Tibetan Plateau ca. 4.5-3.5 Ma (Zheng et al., 2000, 2006).
Nevertheless, more studies indicate that the Tibetan uplift subsequent to ca. 3.6 Ma was
intense, such as the upper reaches of the Yellow River (Li et al., 1996, 1997), the Linxia Basin
(Fang et al., 2005), the Guide Basin (Pares et al., 2003), the Guyuan Basin (Jiang et al., 2007,
Jiang and Ding, 2010), and the Sanmenxia Basin (Wang et al., 2002). Regional
unconformities at ~4 Ma are observed in the Great Plains and western United States
(Hanneman et al., 2003; Hanneman and Wideman, 2006). However, all of these apparently
could not explain the increases in sedimentation rates as well as in grain sizes of sediments at
4-2 Ma in a variety of settings around the globe (Zhang et al., 2001). Increase in erosion rates
caused by global cooling is a major feature of environmental changes in various regions
around the globe at ~4 Ma (Zhang et al., 2001; Jiang et al., 2010). Recently, climate modeling
results suggest that the progressive closure of the Central American Seaway (CAS) initiated
strengthening of Atlantic meridional overturning circulation (AMOC) between 4.8 and 4.0 Ma,
leading to both warming of the Northern Hemisphere (NH) and cooling of the Southern
Hemisphere (SH) (Steph et al., 2010). The SH cooling would induce a marked development
of the Antarctic Ice Sheets at ~4 Ma, pushing the Intertropical Convergence Zone northward.
This was superimposed on the NH warming and brought more precipitation to the NH middle
latitudes, resulting in increases in coarse-grained sediments in the Guyuan Basin since 4.2 Ma
(Jiang et al., 2010). On the other hand, development of the Antarctic Ice Sheets would induce

global cooling and enhancement of physical weathering, initiating increases in sedimentation
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rates as well as increases in grain size from Lake Bikal to the CLP to the SCS (Jiang et al.,
2010). Therefore, the CAS closure during 4.8-4.0 Ma and its influence on ocean circulation
was possibly the major forcing factor for global cooling since ~4 Ma. Like described above,
such global cooling since ~4 Ma possibly exerted a great pressure on the mammal living in
the NH, especially in the sensitive mid-latitude regions. It not only had a great impact on
growth of herbs and shrubs and consequently on continuous living of herbivore, but also
made it impossible for mammal fauna in high latitudes and elevated regions to live through
winter. Given that such global cooling since ~4 Ma had a similar impact on Eurasia and North
America, mammal fauna dispersed from Eurasia to North America as well as from North
America to Eurasia (Fig. 1). Hence, global cooling since ~4 Ma should be responsible for

carnivoran exchanges between Eurasia and North America.

6. Conclusion

Previous studies identified four carnivoran dispersals between Eurasia and North
America in the Neogene, namely, at ~20 Ma, 13-11 Ma, 8-7 Ma, and ~4 Ma. In order to
evaluate driving mechanism of these biological events, we collected, compared and analyzed
a large number of published records. The results indicate that the carnivoran dispersal from
Eurasia to North America at ~20 Ma was probably caused by intense tectonic movements in
Asia. During 13-11 Ma, global cooling possibly drove the mammal exchanges between
Eurasia and North America. By comparison, the carnivoran dispersal from Eurasia to North
America at 8-7 Ma was probably caused mainly by the tectonic movements of the Tibetan

Plateau. Similar to during 13-11 Ma, the carnivoran exchanges between Eurasia and North
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America at ~4 Ma were possibly driven by global cooling.
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Figure Caption

Fig. 1. Migration events of Neogene carnivorans between Eurasia and North America,
adapted from Qiu (2003).

Fig. 2. Distribution of published sites within and around the Himalaya-Tibetan Plateau
discussed in this study for 4 time intervals of 20 Ma, 13-11 Ma, 8 Ma and 4 Ma,
detailed information referring to Table 1 through Table 4 and text.

Fig. 3. Comparison of (A) a* (Li et al., 2006) and (B) SUS of the Kuche Basin in Xinjiang

Province (Huang et al., 2006) with (C) SUS (Lu and Xiong, 2009), (D) quartz content
(Lu et al., 2014), (E) feldspar content (Lu et al., 2014), and (E) lithic fragments (Lu et al.,
2014) of the Qaidam Basin in Qinghai Province, Northwest China.

Fig. 4. Comparison of (A) pollen humidity index (Jiang and Ding, 2008), (B) redness (a*,
Jiang et al., 2007), (C) lightness (L*, Jiang et al., 2008), (D) median grain-size (Md,
Jiang and Ding, 2010), and (E) susceptibility (SUS, Jiang et al., 2008) from the Sikouzi
section at Guyuan, Ningxia Province, China.

Fig. 5. Correlation of (A) the composite oxygen isotope curve from Zachos et al. (2008) and
(B) the Neogene sea-level record from Hagq et al. (1987).

Table 1. Locations of 20 sites with significant tectonic and/or environmental events around
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925 ~20 Ma.

926  Table 2. Locations of 27 sites with significant tectonic and/or environmental events at ~13-11
927 Ma.

928  Table 3. Locations of 20 sites with significant tectonic and/or environmental events at 8.5-7.5
929 Ma.

930 Table 4. Locations of 8 sites with significant tectonic and/or environmental events around ~4
931 Ma.
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