Tunable diode laser measurements of hydrothermal/volcanic CO$_2$, and implications for the global CO$_2$ budget

M. Pedone1, A. Aiuppa1,2, G. Giudice2, F. Grassa2, V. Francofonte2, B. Bergsson1,3, and E. Ilyinskaya4

1DiSTeM, Università di Palermo, via Archirafi, 36, Palermo 90123, Italy
2Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, via Ugo La Malfa, 153, Palermo 90146, Italy
3Icelandic Meteorological Office, Bústaðavegur 7, Reykjavík, Iceland
4British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH91QZ, UK

Received: 1 August 2014 – Accepted: 6 August 2014 – Published: 27 August 2014

Correspondence to: M. Pedone (maria.pedone@unipa.it)

Published by Copernicus Publications on behalf of the European Geosciences Union.

This discussion paper is/has been under review for the journal Solid Earth (SE). Please refer to the corresponding final paper in SE if available.

Tunable diode laser measurements of hydrothermal/volcanic CO$_2$, and implications for the global CO$_2$ budget

M. Pedone et al.
Abstract

Quantifying the CO₂ flux sustained by low-temperature fumarolic fields in volcanic-hydrothermal environment has remained a challenge, to date. Here, we explored the potentiality of a commercial infrared tunable laser unit for quantifying such fumarolic volcanic/hydrothermal CO₂ fluxes. Our field tests were conducted (between April 2013 and March 2014) at Nea Kameni (Santorini, Greece), Hekla and Krýsuvík (Iceland) and Vulcano (Aeolian Islands, Italy). At these sites, the tunable laser was used to measure the path-integrated CO₂ mixing ratios along cross-sections of the fumaroles’ atmospheric plumes. By using a tomographic post-processing routine, we then obtained, for each manifestation, the contour maps of CO₂ mixing ratios in the plumes and, from their integration, the CO₂ fluxes. The so-calculated CO₂ fluxes range from low (5.7 ± 0.9 t day⁻¹; Krýsuvík) to moderate (524 ± 108 t day⁻¹; “La Fossa” crater, Vulcano). Overall, we suggest that the cumulative CO₂ contribution from weakly degassing volcanoes in hydrothermal stage of activity may be significant at global scale.

1 Introduction

The chemical composition of volcanic gas emissions can provide hints onto the mechanisms of magma ascent, degassing and eruption (Allard et al., 2005; Burton et al., 2007; Oppenheimer et al., 2009, 2011), and can add useful information for interpreting the dynamics of fluid circulation at dormant volcanoes (Giggenbach, 1996; Chiodini et al., 2003, 2012).

Carbon dioxide (CO₂) is, after water vapour, the main constituent of volcanic (Giggenbach, 1996) and hydrothermal (Chiodini et al., 2005) gases, and has attracted the attention of volcanologists because it can contribute to tracking magma ascent prior to eruption (Aiuppa et al., 2007, 2010). The volcanic/hydrothermal CO₂ flux sustained by diffuse soil degassing can be measured relatively easily during surveys (Chiodini et al., 1996, 2005; Favara et al., 2001; Hernández, 2001; Cardellini et al., 2003; Inguagi-
giato et al., 2005, 2012; Pecoraino et al., 2005; Mazot et al., 2011) or with permanent installations (Brusca et al., 2004; Carapezza et al., 2004; Werner and Cardellini, 2006; Inguaggiato et al., 2011). In contrast, the volcanic CO$_2$ flux contributed by open vents and/or fumarolic fields is more difficult to measure, since the volcanic gas CO$_2$ signal is diluted – upon atmospheric transport – into the overwhelming background air CO$_2$ signal. Such volcanic CO$_2$ flux emissions have been quantified for only \sim30 volcanic sources, based upon simultaneous measurement of SO$_2$ fluxes (via UV spectroscopy) and CO$_2$/SO$_2$ plume ratios (via direct sampling, Fourier transform Infra Red (FTIR) spectroscopy, or the Multi-GAS; see Burton et al., 2013). This methodology is however not applicable to the countless number of quiescent volcanoes with low-temperature (SO$_2$-free) emissions (Aiuppa et al., 2013). As a consequence, the available dataset of volcanic CO$_2$ fluxes is still incomplete, making estimates of the global volcanic CO$_2$ flux poorly accurate (Burton et al., 2013).

In this paper, we discuss the use of Tunable Diode Laser Spectrometers (TDLS) for estimating volcanic/hydrothermal CO$_2$ fluxes from quiescent volcanoes. Tunable Diode Lasers are increasingly used in air monitoring (Gianfrani et al., 1997a) and, more recently, for volcanic gas observations (Gianfrani et al., 1997b, 2000; De Natale et al., 1998; Richter, 2002). Pedone et al. (2014), recently reported on the first direct observation of the volcanic CO$_2$ flux from the fumaroles of Campi Flegrei (southern Italy), by using a portable Tunable Diode Laser (TDL) system.

We here extend this previous work, discussing the results of TDL observations at four additional quiescent volcanoes: Nea Kameni (Santorini, Greece), Hekla and Krýsuvík (Iceland), and Vulcano Island (Aeolian Islands, Italy) (Fig. 1). We select these volcanoes because they display a range of fumarolic activity from weak (Krýsuvík, Hekla) to moderate (Vulcano Island). While there is strong argument for the global volcanic CO$_2$ budget being dominated by a relatively small number of strong emitters (Shinohara, 2013), it remains that weakly degassing volcanoes dominate – at least in number – the population of historically active volcanoes on Earth. It is on characterising the typical
levels of CO₂ emission from such feeble volcanic point sources that we concentrate on in this study.

2 Background

Santorini, the site of the famous Minoan eruption ~3600 yr ago (Druitt et al., 1999), is an island located in the Aegean Sea, part of the Cyclades Archipelago. Santorini has a surface of 75.8 km² and is presently made up of five islands (Thera, Therasia, Aspronisi, Palea Kameni and Nea Kameni) that constitute the active intra-caldera volcanic field (Dominey-Howes and Minos-Minopulos, 2004). Four periods of unrest in the 20th century have culminated into small-scale eruptions in 1925–1926, 1928, 1939–1941 and 1950 (Fyticas et al., 1990; ISMOSAV, 2009). Outside the caldera, volcanic activity has been recorded in 1649–1650 AD, in the Kolumbo submarine volcano (Vougioukalakis et al., 1994). Since the last eruption in 1950, the volcano has remained quiescent (Tsapanos et al., 1994; Papazakos et al., 2005; ISMOSAV, 2009). In early 2011, geodetic monitoring revealed a new stage of caldera-wide uplift (Newman et al., 2012; Parks et al., 2012), accompanied by swarms of shallow earthquakes. This unrest lasted from January 2011 to April 2012 (Parks et al., 2013). Degassing activity at Santorini is currently concentrated in a small, hydrothermally altered area on top of Nea Kameni islet (Parks et al., 2013), where a number of weakly fuming fumaroles (mostly CO₂, water vapour and air-derived gases; temperatures of 93–97 ºC) are concentrated (Tassi et al., 2013). A recent survey carried by Parks et al. (2013) indicated increased diffuse CO₂ emissions between September 2010 and January 2012; this period was characterized by a change in the degassing pattern, with an increase in soil CO₂ emissions peaking at 38 ± 6 t d⁻¹ in January 2012 (Parks et al., 2013). Tassi et al. (2013) examined the response of fumarole composition to the 2011–2012 unrest, and reported increasing CO₂ concentrations (and decreasing δ¹³C–CO₂) from May 2011 to February 2012, suggesting mantle CO₂ contribution. The summit fumarolic field was the site of our 9 April 2013 survey (see Figs. 1a and 2).
Hekla is one of the most active volcanoes in Europe. Its historical volcanic activity, petrology and geochemistry of volcanic rocks have been the subject of several studies (e.g. Thorarinsson, 1967; Sigmarsson, 1992). Hekla (63.98° N, 19.70° W; 1490 m a.s.l.) is located in the southern part of Iceland at the intersection of the South Iceland Fracture Zone and the Eastern Volcanic Zone (Thordarsson and Larsen, 2007 and references cited). Five plinian eruptions have been identified in the historical record, most recently in 1104 AD (Thorarinsson, 1967; Larsen et al., 1999). In recent decades, Hekla has erupted frequently, at an average rate of one eruption per decade, and most recently in 2000 (Höskuldsson et al., 2007). Gas information has long remained missing, because Hekla appears to be only degassing during eruptions. Very recently, Ilyinskaya et al. (2014) identified a weakly degassing, warm ground on the summit of the Hekla 1980–1981 crater (Fig. 1b), and studied the composition of this gas using data from a permanent Multi-GAS instrument and field campaigns using an accumulation chamber installed by INGV-PA (Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo) and IMO (Icelandic Meteorological Office) in 2012. These authors provided evidences for this gas spot being the only current surface manifestation at Hekla. This degassing field was therefore the site of our measurement survey with the TDL on 2 July 2013 (see Figs. 1b and 3).

Krýsuvík (Fig. 1c) is one of five presently active geothermal areas on the Reykjanes Peninsula, in Iceland (Markússon and Stefansson, 2011). Geothermal activity at Krýsuvík includes hot grounds, steaming vents, steam-heated hot springs and mudpots, and pervasive surface alteration. The most important surface manifestations are confined to the Sveifluháls area, including Austurengjahver and the small areas of Seltún and Hveradalur (Markússon et al., 2011). On 5 July 2013, we performed TDL observations in Hveradalur (63° 53.449′ N, 22° 4.190′ W; Figs. 1c and 4). This area included two major fumarolic manifestations (indicated as “FumA” and “FumB” in Fig. 4). The fumarolic vent “FumA” is monitored by a permanent Multi-GAS instrument (shown as a triangle in Fig. 4) deployed in a joint monitoring program led by British Geological Survey (BGS), INGV and IMO.
Vulcano is a volcanic island belonging to the Aeolian Islands in the southern Tyrrhenian Sea (Italy). Since the last eruption in 1888–1890, this closed-conduit volcanic system has been characterized by intense fumarolic activity concentrated on the summit of La Fossa crater (Fig. 1d), a small (391 m a.s.l.; 2 km in diameter) < 5 ka old pyroclastic cone. Degassing activity has shown signs of intensification in the last decades, including increased fumarole temperatures (Badalamenti et al., 1991; Chiodini et al., 1995; Capasso et al., 1997), and episodic variations of gas/steam ratios (Chiodini et al., 1996; Capasso et al., 1999; Paonita et al., 2002, 2013). The CO$_2$ flux from the La Fossa fumarolic field has been measured previously by Aiuppa et al. (2005, 2006), McGonigle et al. (2008), Tamburello et al. (2011) and Inguaggiato et al. (2012). On 11 March 2014, we measured the CO$_2$ emissions from La Fossa using the measurement configuration of Fig. 1d.

3 Methods

The Tunable Diode Laser Spectroscopy technique (TDLS) relies on measuring the absorbance due to the absorption of IR radiation (at specific wavelengths) by a target gas. Like in previous work at Campi Flegrei (Pedone et al., 2014), we used a Gas-Finder 2.0 Tunable Diode Laser (produced by Boreal Laser Inc.), a transmitter/receiver unit that can measure CO$_2$ mixing ratios over linear open-paths of up to 1 km distance, operating in the 1.3–1.7 µm wavelength range. Radiation emitted by the IR laser transmitter propagates to a gold plated retro-reflector mirror, where it is reflected back to the receiver and focused onto a photodiode detector. Incoming light is converted into electrical waveform, and processed to determine in real-time the linear CO$_2$ column amount (in ppm m) along the optical path, using the procedure described in Tulip (1997). CO$_2$ column amounts are converted into average CO$_2$ mixing ratios (in ppm) along the path by knowledge of path lengths (measured with an IR manual telemeter, 1 m resolution). A portable meteorological station was continuously recording (frequency = 1 Hz) during the measurements to restrict post-processing to sampling intervals characterized...
by similar meteorological conditions. Instrumental accuracy is evaluated using a correlation coefficient (R^2), which is a measure of the similarity between the waveforms of the sample and reference signals. According to manufacture’s datasheets, an accuracy of ±2 % is achieved for $R^2 > 0.95$ (Trottier et al., 2009).

In the field, the GasFinder was set to measure CO$_2$ mixing ratios at 1 Hz rate (Pedone et al., 2014). Alignment between the laser unit and the retro-reflector mirror was optimised using a red visible aiming laser and a sighting scope. The size of the retro-reflector mirror was chosen as to adjust the returning light level to a desired value, depending on the path-length and the expected amount of absorbed radiation.

4 Results and discussions

4.1 Field operations

The GasFinder operated for more than 10 h during the four field campaigns (more than 4 h at Nea Kameni on 9 April 2013; 1 h at Hekla on 2 July 2013; 1.5 h at Krýsuvík on 5 July 2013; and more than 2 h at Vulcano on 11 March 2014). Measuring at 1 Hz, the GasFinder acquired more than 9000 readings of path-integrated CO$_2$ mixing ratios. However, we concentrate here onto a subset of data (1070 readings for Nea Kameni; 985 readings for Hekla; 1150 readings for Krýsuvík and 1757 for Vulcano Island), extracted from the original dataset based on data quality criteria (the same described in Pedone et al., 2014): we selected readings characterized by high accuracy (R^2 values > 0.95, optimal light values), and taken during phases of stable wind direction and speed. Northern trending winds prevailed during the field campaign at Nea Kameni (red arrow in Fig. 2); southern trending winds at Hekla (red arrow in Fig. 3); and north-western trending winds at both Krýsuvík (red arrows in Fig. 4) and “La Fossa” crater at Vulcano Island (red arrow in Fig. 5).

Figure 1 shows the GasFinder operational field set-up at the four volcanoes. In each picture, the GasFinder unit positions are expressed by letters; while retro-reflectors
positions are expressed by numbers (Fig. 1). During each campaign, and at each of the degassing areas, the position of the GasFinder unit was sequentially moved (e.g., from positions A to F in Fig. 1a) so as to scan the plume from different viewing directions and angles. We acquired along each single GasFinder – retro-reflector path (e.g., path A-1 in Fig. 1a) for ~4–5 min, before rotating the instrument’ head to measure along the successive path (e.g., A-2). The number of operated paths ranged from 9 (Hekla) to 36 (Nea Kameni and Vulcano), and the entire measurement grid (e.g., the total number of possible Gas-Finder – retro-reflector paths) was covered in a few hours at most.

4.2 CO₂ mixing ratios and plume transport speed

The highest CO₂ mixing ratios (~1050 ppm) were measured at Hekla (Fig. 3), while the lowest mixing ratios values were detected at Nea Kameni and Krýsuvík (peaking at 590 ppm and <500 ppm respectively, see Figs. 2 and 4). Intermediate CO₂ mixing ratios (~900 ppm) were detected at “La Fossa” crater at Vulcano Island (Fig. 5), reflecting gas contribution from fumarolic vents located on the rim and in the inner wall of the crater.

Background readings were obtained in each of the measurement sites by pointing the laser beam toward a mirror, positioned upwind the fumarolic area (Pedone et al., 2014). Background values of <400 ppm were observed in all the analysed areas (Figs. 2–5).

During each campaign, the vertical plume transport speed was measured by a video camera pointing toward the fumarolic vents, and acquiring sequences of images of the atmospheric plume at 25 frames per second (see Aiuppa et al., 2013; Pedone et al., 2014). The sequences of frames were later post-processed to calculate the time-averaged plume transport speed, after converting camera pixels into distances (using a graduated pole, positioned close to the vent). Plume transport vertical speeds are reported in Table 1, and converge at 1–1.2 m s⁻¹ at all volcanoes.
4.3 Contouring of in-plume CO₂ mixing ratios

At each of the four volcanoes, we combined the available set of path-integrated mixing ratio data to derive a two-dimensional reconstruction of CO₂ distribution (in ppm) in the plume cross-section, between the GasFinder position(s) and the retro-reflectors.

To this aim, we used a Matlab script (released by the authors, and available on request; see Pedone et al., 2014 for more details), to (i) create a matrix containing information on the geometry of the experimental setup (an example is given in Fig. 2 for Nea Kameni) and (ii) use this matrix to obtaining a bi-dimensional reconstruction of CO₂ concentrations in a cross-section of the atmospheric plumes, starting from the raw GasFinder dataset. In order to start the calculations, the Matlab script was initialised with the coordinates of laser and retro-reflectors positions. The additional input data was a column vector, containing the mean CO₂ column amount (in ppm m) obtained for the different GasFinder-retro-reflector paths. With these inputs, the script performed a data inversion using a least-squared method, previously described by Pedone et al. (2014). The geometric matrix (Fig. 2a) generated by the Matlab algorithm, is a geometric reconstruction of the experimental set-up (the explored space was dived into 16 equally sized cells; the red cells in Fig. 2a). The scripts used the data inversion procedure to assign an averaged CO₂ mixing ratio (in ppm) to each cell of the 4 × 4 matrix (the same 16 cells of Fig. 2a). Using sets of synthetic data to test the algorithm, we estimated an error of ≤ 3% associated to these individual cell mixing ratios.

The so-called tomographic matrix (Fig. 2b) was then interpolated with the Surfer software to obtain the contour maps of Figs. 2c and 3–5. We used the Point Kriging geo-statistical method to interpolate the available data and produce an interpolated grid (Isaaks and Srivastava, 1989). Figure 2c is the contour map of CO₂ mixing ratios obtained at Nea Kameni. This map (obtained by interpolation of the tomographic matrix of Fig. 2b) shows the distribution of CO₂ mixing ratios in the roughly horizontal atmospheric cross-section, covering the area between the Gas Finder (A–F) and retro-reflector (1–6) positions (Fig. 1a). The figure shows that, in spite of the feeble
degassing activity present, a CO₂ plume is imaged by our observations on the eastern, inner rim of the Nea Kameni crater. Low CO₂ mixing ratios (\(\sim 390\) ppm) are outputted by the Matlab routine on the north-western portion of the investigated area, while higher CO₂ mixing ratios (from 490 to \(\sim 540\) ppm) are identified on the east, where the main gas emission vents are located. The peak CO₂ mixing ratio of \(\sim 590\) ppm is located in correspondence to one principal gas vent (marked as “Fum6” in Fig. 2c).

Similar results have been obtained at Hekla, Krýsuvík and Vulcano. Figure 3 is a contour map of CO₂ mixing ratios at the Hekla measurement site (Fig. 1b). Given the positioning of Gas Finder and retro-reflectors, the Matlab-derived contour map is here relative to an hypothetical horizontal cross-section, taken at about 1 m height above the warm degassing ground identified by Ilyinskaya et al. (2014) on the rim of the 1980–1981 summit crater of Hekla (Figs. 1b and 3). In this area, the background CO₂ mixing ratio was evaluated at around 400 ppm. The peak CO₂ mixing ratio (\(\sim 1050\) ppm) was detected in the central portion of the investigated area, in the same sector where the highest soil CO₂ fluxes have been observed (Ilyinskaya et al., 2014).

The CO₂ contour map obtained at Krýsuvík is shown in Fig. 4. In this area, CO₂ mixing ratios ranged from 350–380 ppm at the periphery of the exhaling area, and up to \(\sim 500\) ppm near the two main fumarolic vents (“FumA” and “FumB” in Fig. 4).

The CO₂ distribution map of “La Fossa” crater at Vulcano Island is shown in Fig. 5. The highest CO₂ mixing ratios (up to 880 ppm; Fig. 5) were detected in correspondence of the principal fumaroles (“F0”, “F5” and “F11”) of the crater rim and the “FA” fumarolic field in the inner wall of the crater.

4.4 Calculation of the CO₂ flux

The ability of the TDL to contour CO₂ mixing ratios in a volcanic gas plume cross section (Figs. 2–5) opens the way to quantification of the fumarolic CO₂ output from each of the studied areas.

In order to calculate the CO₂ output from each fumarolic area, we integrated each set of CO₂ mixing ratio values in each CO₂ contour map (Figs. 2–5), to obtain a CO₂
Integrated Column Amount (ICA) over the entire plume cross-section. This ICA was then multiplied by the vertical plume transport speed, yielding a CO$_2$ flux. The calculated CO$_2$ fluxes are listed, for each site and each campaign, in Table 1. The accuracy (1 σ) of the mean flux estimates are calculated from error propagation theory applied to both ICA and plume transport vertical speed.

Applying this procedure to the contour map of Fig. 2, we estimate a CO$_2$ flux from Nea Kameni fumaroles of 63 ± 22 t day$^{-1}$. This fumarolic output is ~ 4 times higher than the total diffuse discharge from the soils of 15.4 t day$^{-1}$ reported by Chiodini et al. (1998), and ~ 1.5 times higher than the soil CO$_2$ output of 38 ± 6 t day$^{-1}$ estimated (in January 2012) by Parks et al. (2013). We conclude that the weak but persistent fumarolic activity on-top of Nea Kameni is the major emission source of CO$_2$ at this volcano.

For Hekla, we estimated a CO$_2$ flux of about 15 ± 7 t day$^{-1}$ (Table 1). The large error in our flux estimate (±46 %) is here reflecting the poor quality of our plume transport speed measurement, which determination was complicated by the strong winds blowing on top of Hekla by the time of our measurements. We still observe, however, that our 15 ± 7 t day$^{-1}$ estimate matches closely the recently reported CO$_2$ flux for Hekla summit (13.7 ± 3.7 t day$^{-1}$), obtained using conventional (accumulation chamber) soil survey techniques (Ilyinskaya et al., 2014).

For the Hveradalur fumarolic field of Krýsuvík, we estimate a CO$_2$ flux of 5.7 ± 0.9 t day$^{-1}$ (Table 1). This is the first CO$_2$ output estimate for this area, at least to our knowledge.

Finally, on March 2014 we evaluate the CO$_2$ flux at La Fossa crater at 524 ± 108 t day$^{-1}$ which is in the same range of those obtained in previous studies by Aiuppa et al. (2005) (420 \pm 250 t d$^{-1}$), Tamburello et al. (2011) (488 t d$^{-1}$, average of two campaigns in 2009) and Inguaggiato et al. (2012) (453 t d$^{-1}$) (see Fig. 6) and using different techniques.
4.5 Implications for the global volcanic CO$_2$ flux

Our CO$_2$ observations were taken at four volcanoes displaying a range of fumarolic activity, from weak (Hekla) to moderately strong (La Fossa of Vulcano). As such, our results add novel information on the CO$_2$ degassing regime of quiescent volcanoes in Solfatara stage of activity, and on their potential contribution to the global volcanic CO$_2$ budget.

The current state-of-the-art of volcanic CO$_2$ flux research has recently been summarised in Burton et al. (2013). The authors presented a compilation of 33 subaerial volcanoes for which CO$_2$ flux observations were available at that time. These “measured” emissions totalled a cumulative CO$_2$ output of 59.7 Mt yr$^{-1}$. The same authors used linear extrapolation, from the measured 33 to the 150 plume-creating, passively degassing volcanoes on the GVP catalogue (Siebert and Simkin 2002), to obtain an extrapolated global volcanic CO$_2$ flux of \sim 271 Mt yr$^{-1}$.

The linear extrapolation approach of Burton et al. (2013) is based on the implicit assumption that the measured 33 volcanoes represent a statistically significant sub-set of the volcanic CO$_2$ flux population. However, we argue that past volcanic CO$_2$ observations have been prioritized at strongly degassing volcanoes under unrests; therefore, the 33 volcanoes population may be biased towards the category of top gas emitter, implying the linear extrapolation technique may be incorrect. The low CO$_2$ output associated to “quiet” volcanoes, as reported in our present work, corroborates this conclusion.

The alternative extrapolation approach used to quantify CO$_2$ emissions from “unmeasured” volcanoes is to assume that the distribution of volcanic CO$_2$ fluxes obeys a power law (Brantley and Koepenick, 1995), as other geophysical parameters do (Marret and Allmendinger, 1991; Turcotte, 1992). If volcanic emissions follow a power-law distribution, then the number of volcanoes (N) with an emission rate $\geq f$ are given by:

$$N = af^{-c}$$
where \(a \) and \(c \) are constants that can be derived from linear regression on measured \(\text{CO}_2 \) emission datasets. In the power-law assumption, the global volcanic \(\text{CO}_2 \) flux \((f_{\text{tot}}) \) was extrapolated to \(88–132 \text{ Mt yr}^{-1} \) (Brantley and Koepenick, 1995) using the relation:

\[
f_{\text{tot}} = f_1 + f_2 + f_3 + f_N \left[\frac{c}{1-c} (N+1) \left(\frac{N}{N+1} \right)^{1/2} \right]
\]

where \(f_N \) refers to the \(N \)th-largest measured flux. This \(88–132 \text{ Mt yr}^{-1} \) estimate is a factor 2–3 lower than obtained with the linear extrapolation technique (Burton et al., 2013). On the same basis, the volcanic+metamorphic \(\text{CO}_2 \) flux was evaluated at \(\sim 264 \text{ Mt yr}^{-1} \) (Brantley and Koepenick, 1995).

The power-law distribution assumption has extensively been used to extrapolate volcanic gas fluxes at both global and individual-arc scale (Hilton et al., 2002). However, concerns have recently been raised on its validity. For example, Mori et al. (2013) demonstrated that the \(\text{SO}_2 \) flux distribution of Japanese volcanoes noticeably diverges from a simple power law distribution. The case of the global volcanic \(\text{CO}_2 \) flux population is illustrated in Fig. 7. The figure is a log-log plot of the cumulative number of volcanoes \((N) \) having measured \(\text{CO}_2 \) flux of \(\geq f \). The diagram is based upon the dataset of Burton et al. (2013), implemented with new results from this study (Table 1) and additional data for Turrialba (1140 t day\(^{-1}\); Conde et al., 2014) and Poas (24.7 t day\(^{-1}\); Aiuppa et al., 2014) in Costa Rica, Telica (132 t day\(^{-1}\); Conde et al., 2014) and San Cristobal (523 t day\(^{-1}\); Aiuppa et al., 2014) in Nicaragua, Lastarria (973 t day\(^{-1}\)) and Láscar (534 t day\(^{-1}\)) in Chile (Tamburello et al., 2013), and Soufriere in Guadeloupe (14.9 t day\(^{-1}\); Allard et al., 2014). This implemented \(\text{CO}_2 \) flux population (43 volcanoes in total) clearly departs from a linear trend, as would be expected for a power-law distribution (see Eq. 1). The observed distribution shows, instead, a clear inflection point at \(\log f \sim 2.5–2.8 \) (e.g., \(\text{CO}_2 \) flux of \(\sim 300–600 \text{ t day}^{-1} \)), which appears to divide high (> \(600 \text{ t day}^{-1} \)) from low (< \(300 \text{ t day}^{-1} \)) \(\text{CO}_2 \) flux volcanoes (L and H regression lines in Fig. 7).
In view of our novel results (listed in Table 1), we propose that the non-linear behavior of the volcanic CO$_2$ flux population may (at least in part) reflect the scarcity of CO$_2$ flux information on weakly fuming, quiescent volcanoes. The case Hekla is emblematic in this context: the volcano has remained in a very active state in the last century (it violently erupted only fourteen years ago; Höskuldsson et al., 2007), but shows today no visible plume or gas emission. Yet however, our data suggest the volcano may contribute daily ~ 15 t of CO$_2$ to the atmosphere in invisible, but probably persistent form. Similarly, no plume is seen on top of Nea Kameni in Santorini, which weak fumaroles yet release 63 ± 22 t of CO$_2$ every day (in addition to a sizeable diffuse contribution from the soil), and 5.7 ± 0.9 t of CO$_2$ are released daily by quiet hydrothermal activity at Krýsuvík (which most recent activity probably dates back the 14th century; Smithsonian Institute, 2013). While the individual contribution of each of the above volcanoes is negligible globally, the cumulative contribution of all feebly degassing volcanoes on Earth may not, and may impact the global CO$_2$ flux distribution of Fig. 7.

To explore the latter argument further, we consider that, of the 1549 volcanic structures listed in the GVP catalogue, around 500 are considered to have been active in the Holocene (Smithsonian Institution, 2013), and thus still potentially degassing. For the sake of illustration, we assume that all such 500 volcanoes have a CO$_2$ flux equal to or higher than 10 t day$^{-1}$ (the mean of our measured Krýsuvík and Hekla fluxes). This yields to a new point in Fig. 7, with coordinates log $f = 1$ (CO$_2$ flux = 10 t day$^{-1}$) and log $N = 2.69$ (500 volcanoes), which lies right above the linear regression line of the high CO$_2$ flux (log $f > 2.5$) population (see dashed line H in Fig. 7). The regression line (line H$_1$; $R^2 = 0.98$) obtained considering the high CO$_2$ flux volcanoes (log $f \geq 2.5$) plus this new log $f = 1$ point has slope $c = -0.72$. Using this value in Eq. (2), and with $N = 500$, we calculated an extrapolated CO$_2$ flux of 67 Mt yr$^{-1}$. From these preliminary calculations, we conclude that (i) the power-law distribution may be an appropriate representation of the population of CO$_2$ flux data, provided the output of the several hundreds of weakly degassing, quiescent/hydrothermal/dormant volcanoes is considered;
(ii) a large number of volcanoes remain to be measured, possibly being characterized by intermediate CO$_2$ output (logf between 1 and 2.5 in Fig. 7).

5 Conclusions

We have investigated the fumarolic CO$_2$ output from 4 quiescent volcanoes in hydrothermal state of activity, using an Infra Red TDL. At each of the studied volcanoes, the acquired TDL results have been used to contour CO$_2$ mixing ratios in the plumes’ cross-sections, and consequently to quantifying the fumarolic CO$_2$ output. The highest output (524 ± 108 t day$^{-1}$) is obtained at La Fossa of Vulcano Island, the only volcano of the 4 where a persistent atmospheric plume is observed. The lowest CO$_2$ output (5.7 ± 0.9 t day$^{-1}$) is associated with hydrothermal activity at Krýsuvík, with intermediate emissions at Hekla (15 ± 7 t day$^{-1}$) and Nea Kameni (63 ± 22 t day$^{-1}$). The latter 3 volcanoes all currently display weak exhalative activity and no visible plume emission. We therefore suggest that a 5.7–63 t day$^{-1}$ CO$_2$ output range may be characteristic of many of the ~500 volcanoes active in the Holocene, this in spite the majority lack obvious surface manifestations of degassing. Assuming a representative CO$_2$ output of 10 t day$^{-1}$ for such 500 Holocene volcanoes, we show that the global population of CO$_2$ emissions may approach a simple power-law distribution.

Author contribution. M. P. carried out the field campaigns in the study areas and drafted the manuscript. A. A. allowed the work realization and actively contributed to drafting the manuscript. G. G. participated and provided technical support during field campaigns. F. G. provided important suggestions during data processing. V. F. provided technical assistance during the field work. B. B. and E. I. participated and provided technical support during field campaigns in Iceland. All authors have read and approved the final manuscript.

Acknowledgements. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007/2013)/ERC grant agreement n1305377, and from the FP7 grant “Futurevolc”. The authors would like to acknowledge technical assistance from Boreal Laser Inc., in particular...
Michael Sosef. We also acknowledge IMO (Icelandic Meteorological Office) staff, in particular Melissa Pfeffer and Richard Yeo for support during field work. Nicolas Cristou is thanked for technical assistance during field campaign at Santorini Island. Dario Gharehbaghian, student at University of Bologna, and Lorenza Li Vigni, student at University of Palermo, are acknowledged for their support during field work at Vulcano Island.

References

Gianfrani, L., Gabrysch, M., Corsi, C., and De Natale, P.: Detection of H$_2$O and CO$_2$ with distributed feedback diode lasers: measurement of broadening coefficients and assessment of the accuracy levels for volcanic monitoring, Appl. Optics, 36, 9481–9486, 1997b.

Tassi, F., Vaselli, O., Papazachos, C., Giannini, L., Chiodini, G., Vougioukalakis, G. E., Karagianni, E., Vamvakaris, D., and Panagiotopoulos, D.: Geochemical and isotopic changes...

Table 1. CO$_2$ fluxes (in t day$^{-1}$) and standard deviation (1 σ) calculated in this study. The plume transport vertical speed (in m s$^{-1}$) is also given for each site.

<table>
<thead>
<tr>
<th>Volcano</th>
<th>Date</th>
<th>Gas speed (m s$^{-1}$) (±1 σ)</th>
<th>CO$_2$ Flux (t d$^{-1}$) (±1 σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nea Kameni</td>
<td>9 Apr 2013</td>
<td>1.20 ± 0.4</td>
<td>63 ± 22</td>
</tr>
<tr>
<td>Hekla</td>
<td>2 Jul 2013</td>
<td>1.00 ± 0.5</td>
<td>15 ± 7</td>
</tr>
<tr>
<td>Krýsuvík</td>
<td>5 Jul 2013</td>
<td>1.17 ± 0.18</td>
<td>5.7 ± 0.9</td>
</tr>
<tr>
<td>Vulcano</td>
<td>11 Mar 2014</td>
<td>1.00 ± 0.20</td>
<td>524 ± 108</td>
</tr>
</tbody>
</table>
Figure 1. The study areas. (A) Nea Kameni summit crater (Greece) (B) Hekla summit (Iceland) (C) Krýsuvík hydrothermal field (D) “La Fossa” crater (Vulcano Island). In each picture, the positions of GasFinder and retro-reflectors are shown with letters and numbers, respectively.
Figure 2. Output of the tomographic algorithm. Example for the Nea Kameni campaign, 9 April 2013. (A) Geometric reconstruction of the field experimental set-up and (B) tomographic matrix. The script uses a data inversion procedure to assign an averaged CO₂ mixing ratio (in ppm) to each cell of the matrix. (C) CO₂ mixing ratios (ppm) contour map. GasFinder and retro-reflectors positions are shown with letters and numbers respectively. “Fum4”, “Fum5” and “Fum6”: positions of main degassing vents; blue triangles: permanent INGV-PA stations; red arrow: principal direction of plume dispersal. See text.
Figure 3. Contour map of CO₂ mixing ratios (ppm), Hekla campaign of 2 July 2013. GasFinder and retro-reflectors positions are shown with letters and numbers respectively. Blue triangle: INGV-PA/IMO station; red arrow: principal direction of plume dispersal.
Figure 4. CO$_2$ Contour map of CO$_2$ mixing ratios (ppm), Krýsuvík campaign of 5 July 2013. GasFinder and retro-reflectors positions are shown with letters and numbers respectively. “FumA” and “FumB”: positions of main degassing vents; blue triangle: INGV-PA/IMO station; red arrow: principal direction of plume dispersal.
Figure 5. Contour map of CO$_2$ mixing ratios (ppm), “La Fossa” campaign, Vulcano Island, 11 March 2014. GasFinder and retro-reflectors positions are shown with letters and numbers respectively. Red arrow: principal direction of plume dispersal.
Figure 6. Time-series of CO₂ flux values (tons/day) for “La Fossa crater” (Vulcano Island). Previous works: Aiuppa et al. (2005, 2006), Tamburello et al. (2011) and Inguaggiato et al. (2012). The flux value of 524 ± 108 t d⁻¹, obtained in this study, is also shown.
Figure 7. Cumulative frequency of the number of volcanoes (N) emitting CO$_2$ flux $\geq f$ (in logarithmic scale). The diagram is based upon the dataset of Burton et al. (2013), implemented with new results from this study and additional data (see text). Red point, with coordinates log$f = 1$ (CO$_2$ flux = 10 t day$^{-1}$) and log$N = 2.69$ (500 volcanoes), lies right above the linear regression line of the high CO$_2$ flux (log$f > 2.5$) population (dashed line H). The regression line (line H$_1$; $R^2 = 0.98$) is obtained considering the high CO$_2$ flux volcanoes (log$f \geq 2.5$) plus this new log$f = 1$ point.