Interactive comment on “Segmentation of the Izu-Bonin and Mariana plates based on the analysis of the Benioff seismicity distribution and regional tomography results” by K. Jaxybulatov et al.

W.P. Schellart (Referee)
wouter.schellart@monash.edu

Received and published: 27 September 2012

Comments on:
Segmentation of the Izu-Bonin and Mariana plates based on the analysis of the Benioff seismicity distribution and regional tomography results
Authors: K. Jaxybulatov, I. Koulakov, and N. L. Dobretsov
Reviewed by W. P. Schellart

This manuscript presents new P-wave and S-wave tomography models of the Izu-Bonin-Mariana subduction segment in the western Pacific. The new tomography models are largely comparable to those published earlier, but there also appear to be some features not observed in previous models, such as a possible continuation of slab material into the uppermost lower mantle at the northern Izu-Bonin subduction segment and an apparent slab gap at 0-400 km depth at the cusp between the Izu-Bonin arc and the Mariana arc. The authors present a schematic conceptual model for the geometric evolution of different slab segments of the Izu-Bonin-Mariana subduction segment. The manuscript presents interesting new tomography models of the Izu-Bonin-Mariana region that will likely be a valuable addition to the tomography models currently available. There are, however, several problems with the interpretation of these models in terms of slab geometry, slab kinematics, and the tectonic evolution of the region (see comments below). In particular, the schematic geometric evolution of the slab and the inferred trench migration as shown in Fig. 8 are over-simplistic and should be constrained by available plate kinematic data. Furthermore, it appears that the authors are unaware of the available literature showing that the Mariana subduction segment is currently advancing (moving westward) and has been doing so for the last ~5-10 Myr; it is not retreating (moving eastward) as assumed by the authors. Then there are several other problems as outlined below.

COMMENTS

*Title: In order to avoid a lot of confusion, “plates” should be replaced with “siabs”.

*Page 825, lines 17-18: It is not correct to talk of the Izu-Bonin-Mariana arc, because this subduction segment, which forms part of the Kamchatka-Kuril-Japan-Izu-Bonin-Mariana subduction zone, consists of two arcs, namely the Mariana arc and the Izu-Bonin arc, with a clear geometrical cusp in between.

*Page 825, lines 26-27: It is not generally accepted that opening of the Mariana Trough caused oceanward displacement of the Mariana trench. In fact, it is generally argued
that opening of the Mariana Trough is mainly a consequence of relatively rapid westward motion of the overriding Philippine plate with a relatively slowly westward moving Mariana Trench [e.g. Carlson and Mortera-Gutierrez, Tectonophysics1990].

*Page 826, lines 1-2: "The rate of the Pacific plate subduction in respect to the Philippine Plate". The rate of subduction is an absolute rate and is not dependent on a reference frame, so "in respect to the Philippine plate" should be deleted.

*Page 826, lines 4-5: "The rate of eastward displacement of the Mariana trench is about 2 cm yr$^{-1}$ (DeMets et al., 2010)". The Mariana Trench is currently not migrating eastward (retreating), it is migrating westward (advancing). This has been shown in earlier works on plate kinematics for the last \sim5 Myr [e.g. Carlson and Mortera-Gutierrez, Tectonophysics1990], and more recently it has been shown to be the case for geodetic and geological relative plate motion models in several "absolute" reference frames, such as the Indo-Atlantic hotspot reference frame, the Pacific hotspot reference frame, and the no-net-rotation reference frame [Schellart et al., Earth-Science Reviews 2008]. In the Indo-Atlantic HS frame from O'Neill et al. [G-cubed 2005] and the NNR frame from Kreeger et al. [GJI 2003] it is advancing westward about 1-2 cm/yr, while in the Pacific HS frame from Gripp and Gordon [GJI 2002] it is advancing westward at about 3-5 cm/yr. So in all likelihood, using the DeMets et al. [2010] plate motion model, the trench is not retreating eastward at 2 cm/yr. Even if it is the case, which I doubt, then you need to discuss that in most other reference frames it is actually advancing westward rather than retreating eastward.

*Page 827, lines 11-16: "We did not find in the literature any evidence of forward displacement of the Mariana segment of the trench (Seno and Maruyama, 1984; Seno et al., 1993; Hall et al., 1995a, b; Hall, 2002); just opposite, most authors show the backward displacement. In the discussion session we will propose an alternative point of view based on our tomography results." There is certainly literature that shows the westward migration of the Mariana trench. The plate kinematic work of Carlson and Mortera-Gutierrez [Tectonophysics, 1990] has shown that the Mariana trench has been advancing westward since \sim5 Ma, and the authors argued that such advance causes the Mariana slab dip angle to increase. More recently, the plate kinematic work of Sdrolias and Muller [G-cubed 2006] show the episodic migration of the Mariana trench with a \simstable trench at 50-25 Ma, a retreating trench at 25-5 Ma and an advancing trench at 5-0 Ma. Most recently, the work of Schellart [GRL 2011] combines trench migration calculations for several subduction zone segments in the western Pacific for the last 20 Myr with slab structures as deduced from seismicity and seismic tomography and slab structures as deduced from geodynamic subduction models. This work shows that the Mariana slab, with a relatively steep upper mantle slab and possible slab piling and folding near and below the 660 km discontinuity, can be largely explained with a relatively stable trench for the last 20 Myr, with, on average, slow trench retreat at \sim20-10 Ma and with, on average, slow trench advance at 10-5 Ma. In any case, it is clear that there is considerable literature that discusses the advance of the Mariana trench, several of which also relate this to the Mariana slab structure. The authors will need to discuss these works (and possibly others) in their revised manuscript to give a balanced view of the literature.

*Page 832, line 4: Cross-section 1 does not cross the northern part of the Izu-Bonin arc, it crosses the Japan (Honshu) arc.

*Page 832, lines 9-13: "For Sect. 2, the slab becomes steeper, but in the transition zone between 400 and 600 km depth it turns to be horizontal. In this section, an enigmatic feature is a prominent positive anomaly in the lower mantle which is clearly seen in both P- and S-models, though with different shapes. Note that in the neighboring sections 1 and 3, this anomaly is not observed.". Is this lower mantle high-velocity anomaly also observed in other tomography models? For example, the tomography model from Huang and Zhao [JGR 2006] does not show it. They only show a slab segment at \sim600 km depth. This requires some discussion.

*Page 837, paragraph at the top: The apparent absence of slab material at \sim0-400 km depth at the corner between the Mariana and Izu-Bonin segments is based on the
absence of a high-velocity anomaly there in the tomography models. However, Fig. 4, section 5 shows there is seismicity in this region down to \(\sim 300 \) km depth, suggesting the presence of a slab at least down to 300 km depth. Furthermore, the checkerboard tests in Fig. 6 show that the return amplitude at 100 km and 220 km depth in this region is rather low, probably the lowest compared to regions to the north and south. So one could think that the absence of a tomographic high-velocity anomaly is the sign of insufficient seismic ray coverage in this area. In any case, this section requires more discussion to explain the potential problems noted above.

*Pages 837-838, conclusions: “We propose the scenario which explains the variable dipping angle of the slab beneath the IBM arc. In the northernmost part of the Izu-Bonin zone, the lithosphere is relatively young and buoyant. This and also the trench retreat can explain a gentle deepening of the slab to the angle of about 35 degrees.”. The role played by trench retreat makes sense, as subduction models also show that with rapid trench retreat the slab dip angle decreases. The role of lithosphere age does not make sense, because along the entire Japan-Izu-Bonin-Mariana trench it is very old, and there is no reason to assume that the increase from \(\sim 130 \) Ma in the north to \(\sim 150 \) Ma in the south will have a significant impact on the rheological and thermal properties of the lithosphere and thus on its geometry.

*Page 838, lines 3-5: “In the Mariana segment, despite of backward migration of the arc, the slab remains nearly vertical. This can only be explained by jumping the subduction zone from one place to another.”. As mentioned earlier, the Mariana trench segment has been advancing westward for the last 5-10 Myr, so there is no need to invoke jumping of subduction zones. Indeed, the steep slab geometry can be explained very well with geodynamic subduction models that replicate the subduction kinematics of the region for the last 20 Myr [e.g. Schellart, GRL 2011].

*Fig. 8 and discussion section: The schematic cross-sections illustrating the evolution of the slab geometry in four places are over-simplistic. This is particularly the case because the authors only draw two trench positions: the position of the trench for the present day and for one time in the past, which is only based on the tomography slice at 975 km depth. High-velocity material at 975 km depth represents material subducted tens of millions of years ago, and in this case it might represent slab material subducted possibly 30-40 Myr ago, or even earlier. In order to deduce the kinematics of subduction and trench migration, so as to deduce the geometrical evolution of the slab, the trench positions need to be reconstructed at shorter time intervals in the past, such as has been done by Sdrolias and Muller [G-cubed 2006], who use 5 Myr intervals. Another problem with the reconstructions is that they only show the (oversimplified) migration of the trench, but they should also show the subduction component due to trenchward subducting plate motion. Only then one can get an estimate of the total amount of subducted lithosphere (and thus an estimate of the slab length) and only then can one quantify the partitioning of subduction between trench migration and trenchward subducting plate motion. This is essential in order to reconstruct the geometric evolution of a slab. Thus, the authors need to use a higher temporal resolution and need to incorporate both components of subduction (trench migration and trenchward subducting plate motion), and then it is possible to make inferences about the migration of the trench and the geometrical evolution of the slab.

*Fig. 8: For the present day (blue) cross-section B1-B2 shows a gap of 200-300 km between the 45 degrees dipping slab and the flat segment at \(\sim 500 \) km depth. This is not observed in the tomography images, where there is no gap (Fig. 4, section 2), but where the horizontal part at \(\sim 500 \) km depth is connected with the Wadati-Benioff zone. This requires discussion.

*Fig. 8: the purple line does not indicate the location of the arc, it indicates the location of the trench.

*Fig. 4: The authors should discuss the absence of a high-velocity slab anomaly at 0-400 km depth in section 5 (both P and S), while there is seismicity down to \(\sim 300 \) km depth. The same goes for sections 6 and 9, with an absence of a high-velocity slab anomaly (both P and S) but presence of seismicity at 0-200 km depth.
Interactive comment on Solid Earth Discuss., 4, 823, 2012.