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Abstract

In this paper, we propose a wave-equation based traveltime seismic tomography
method with a detailed description of its step-by-step process. First, a linear relation-
ship between the traveltime residual ∆t = T obs − T syn and the relative velocity pertur-
bation δc(x)/c(x) connected by a finite-frequency traveltime sensitivity kernel K (x)5

is theoretically derived using the adjoint method. To accurately calculate the traveltime
residual ∆t, two automatic arrival-time picking techniques including the envelop energy
ratio method and the combined ray and cross-correlation method are then developed
to compute the arrival times T syn for synthetic seismograms. The arrival times T obs of
observed seismograms are usually determined by manual hand picking in real applica-10

tions. Traveltime sensitivity kernel K (x) is constructed by convolving a forward wavefield
u(t,x) with an adjoint wavefield q(t,x). The calculations of synthetic seismograms and
sensitivity kernels rely on forward modelling. To make it computationally feasible for to-
mographic problems involving a large number of seismic records, the forward problem
is solved in the two-dimensional (2-D) vertical plane passing through the source and15

the receiver by a high-order central difference method. The final model is parameter-
ized on 3-D regular grid (inversion) nodes with variable spacings, while model values
on each 2-D forward modelling node are linearly interpolated by the values at its eight
surrounding 3-D inversion grid nodes. Finally, the tomographic inverse problem is for-
mulated as a regularized optimization problem, which can be iteratively solved by either20

the LSQR solver or a non-linear conjugate-gradient method. To provide some insights
into future 3-D tomographic inversions, Fréchet kernels for different seismic phases are
also demonstrated in this study.

1 Introduction

Seismic tomography is one of the core methodologies for imaging the structural hetero-25

geneity of the Earth’s interior at a variety of scales. Ever since the pioneering works of
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Aki and Lee (1976) and Dziewonski et al. (1977), tomographic images have provided
crucial information to the understanding of plate tectonics, volcanism and geodynam-
ics (e.g. Romanowicz, 1991; Liu and Gu, 2012; Zhao, 2012). Seismic tomography itself
also went through significant development over the last three decades, including ad-
vances in both methodology and data usage.5

In the first two decades of its history, seismic tomography is mainly based on the
ray theory which assumes that seismic traveltime is determined by the structure along
the infinitely thin ray path only. However, because of scattering, wave front healing
and other finite-frequency effects, seismic measurements (such as traveltime and
amplitude), especially those made on broadband recordings, are sensitive to three-10

dimensional (3-D) structures off the ray path (e.g. Marquering et al., 1999; Dahlen et al.,
2000; Tape et al., 2007). Ray theory is actually only valid when the scale length of the
variation of material properties is much larger than the seismic wavelength (Rawlinson
et al., 2010). To take into account the influence of off-ray structures, finite-frequency
tomography methods in which 2-D or 3-D traveltime and amplitude sensitivity kernels15

are constructed, including those based on the paraxial approximation and dynamic
ray tracing (e.g. Marquering et al., 1999; Dahlen et al., 2000; Tian et al., 2007; Tong
et al., 2011) and those based on the normal mode theory (e.g. Zhao et al., 2000; Zhao
and Jordan, 2006; To and Romanowicz, 2009). Tomographic models with improved
resolutions were reported by recent finite-frequency tomographic studies (e.g. Montelli20

et al., 2004; Hung et al., 2004, 2011; Gautier et al., 2008), although comparison to ray-
based tomography remains controversial (de Hoop and van der Hilst, 2005a; Dahlen
and Nolet, 2005; de Hoop and van der Hilst, 2005b). The underlying problem of the
finite-frequency tomography based on paraxial approximation and dynamic ray tracing
is that its kernel computation still relies on the ray theory, although it was devised to ac-25

count for non-geometrical finite-frequency phenomena. In the last decade or so, rapid
advances in high-performance computing and forward modelling techniques make it
feasible to solve the seismic wave equations in realistic Earth models by full numer-
ical methods (e.g. Komatitsch and Tromp, 2002a, b; Komatitsch et al., 2004; Operto
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et al., 2007). This opens the way to compute sensitivity kernels based on numerical
simulation of the full seismic wavefield, avoiding the use of approximate theories (e.g.
Liu and Tromp, 2006, 2008; Fichtner et al., 2009). It also made the conceptual wave-
equation based seismic inversion methods such as the one presented by Tarantola
(1984) feasible in realistic applications (Tape et al., 2009; Fichtner and Trampert, 2011;5

Zhu et al., 2012). To our best knowledge, adjoint tomography (Tromp et al., 2005; Ficht-
ner et al., 2006), scattering integral methods (L. Zhao et al., 2005; Chen et al., 2007b),
and full waveform inversion (FWI) in the frequency domain (Pratt and Shipp, 1999;
Operto et al., 2006) are among the most popular tomographic techniques based upon
solving full wave equations. FWI in frequency domain has been mainly used in explo-10

ration problems (e.g. Virieux and Operto, 2009; Lee et al., 2010) for relative small and
regular simulation domains. Adjoint tomography and scattering integral tomography are
closely related to each other, and a detailed comparison between adjoint tomography
and scattering integral tomography can be found in Chen et al. (2007a). For brevity, we
restrict our following discussions to adjoint tomography (Liu and Gu, 2012).15

Adjoint tomography is currently one of the most popular and promising tomographic
methods for resolving strongly varying structures. It takes advantages of full 3-D nu-
merical simulations in forward modelling and sensitivity kernel calculation, often iter-
atively improves models through optimization techniques (Tromp et al., 2005; Tape
et al., 2007). The use of full numerical simulations allows for the freedom of choosing20

either 1-D or 3-D reference models and accurate calculations of seismograms (Tong
et al., 2014a) and sensitivity kernels for complex models (Liu and Tromp, 2006, 2008).
Using this approach, Tape et al. (2009, 2010) obtained a 3-D velocity model of the
southern California crust that captures strong local heterogeneity up to ±30%. Simi-
larly, Zhu et al. (2012) generated a tomographic model of the European upper mantle25

based on adjoint tomography that reveals nice correlations between structural features
and regional tectonics and dynamics. Similarly, Rickers et al. (2013) presented a 3-D
S wave velocity model of the North Atlantic region, revealing structural features in un-
precedented detail down to the depth of 1300 km. These successful applications reveal
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the promising future of next generation seismic tomographic models based on full nu-
merical simulations. However, the expensive computation cost associated with adjoint-
type of wave-equation-based tomographic methods, especially for 3-D problems, is still
a major stumbling block to its wider applications. For example, for a moderate number
of three-component seismograms, 0.8 million and 2.3 million central processing unit5

hours were used to generate the tomographic models of the southern California crust
and the European upper mantle, respectively (Tape et al., 2009; Zhu et al., 2012).
The severity of the cost issue may be remedied when simulations are ported to the
Graphic Processing Unit (GPU) hardwares (e.g. Komatitsch et al., 2010; Michéa and
Komatitsch, 2010). However, ray-based tomographic methods remains the most popu-10

lar and accessible techniques in mapping the heterogeneous structures of the Earth’s
interior (e.g. Li et al., 2008; Hung et al., 2011; Tong et al., 2012; Zhao et al., 2012).

As mentioned above, full 3-D numerical simulations in forward modelling and sen-
sitivity kernel calculations guarantee the accuracy of synthetic seismograms and sen-
sitivity kernels for 3-D complex models. But they also make adjoint tomography com-15

putationally demanding and even unaffordable. To strike a balance between the com-
putational efficiency and accuracy of full wave-equation based tomographic methods,
we propose to conduct the forward modelling and sensitivity kernel calculation in the
2-D source-receiver vertical plane by a high-order finite-difference scheme. As we will
show, if only traveltime measurements are considered, this 2-D approximation offers20

acceptable accuracy. Meanwhile, by numerically solving 2-D wave equations, finite-
frequency effects such as wavefront healing are naturally taken into account, and the
accuracy of sensitivity kernels in complex heterogeneous models is also improved. Al-
though forward modellings are restricted to 2-D planes, we still plan to invert for 3-D
tomographic models on a 3-D inversion grid. The 2-D forwarding modelling and the 3-D25

tomographic inversion are linked by expressing the model parameters (such as velocity
perturbation) at each 2-D forward modelling grid node as a linear interpolation of the
model parameters at its surrounding 3-D inversion grid nodes. We name the resultant
2-D-3-D tomographic method as wave-equation based traveltime seismic tomography
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(WETST). Comparing with the 3-D-3-D adjoint tomography based on the spectral el-
ement method (Tromp et al., 2005; Fichtner et al., 2006), this 2-D-3-D WETST based
upon a 2-D finite-difference scheme is generally more computationally affordable. This
also entails that WETST can be applied to tomographic inversions involving significant
amount of data based on even moderate computational resources.5

Arrival time picking is another important issue for traveltime seismic tomography.
Since the early era of ray-based seismic tomography, researchers have mainly relied
on manually picked arrival times to map subsurface structures (e.g. Aki and Lee, 1976;
Zhao et al., 1992). Arrival times are usually picked within time windows centred at the
predicted traveltimes (Kennett and Engdah, 1991; Maggi et al., 2009). In recent years,10

increasingly number of deployed broadband seismic arrays have resulted in the prolif-
eration of seismic data. To increase efficiency and reduce the amount of manual labour
and human errors in seismic data processing, fast and automatic traveltime picking
algorithms with high accuracy are highly demanded to process vast amount of seis-
mic recordings. Indeed, various techniques have been presented for automatic/semi-15

automatic detecting and picking the arrivals of different seismic phases, and the most
widely used of which is the short-term-average (STA) to long-term-average (LTA) ratio
method and its variations (e.g. Coppens, 1985; Baer and Kradolfer, 1987; Saari, 1991;
Earle and Shearer, 1994; Han et al., 2010). Zhang et al. (2003) developed an auto-
matic P wave arrival detection and picking algorithm based on the wavelet transform20

and Akaike information criteria. Cross-correlation method is another routinely used
technique to obtain the traveltime anomalies of broadband pulses, which is specially
favoured by finite-frequency tomographic applications (e.g. Luo and Schuster, 1991;
Dahlen et al., 2000; Tape et al., 2007). However, the quality of picked arrivals by these
methods may vary in accuracy for datasets of different signal-to-noise ratio (SNR), and25

often only arrivals on low-noise seismograms can be effectively picked (Akram, 2011).
Specifically, the validity of the correlation-based methods requires that the synthetic
seismograms be reasonably similar to the observed seismograms. Less restrictive au-
tomatic arrival picking algorithms need to be further developed. In this study, we pro-
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pose two different automatic arrival-time determination methods (Sect. 3) that forms an
integral part of our wave-equation based traveltime seismic tomography method.

When arrival-time data and sensitivity kernels are determined or computed, wave-5

equation based traveltime seismic tomography is cast as an optimization problem.
Model parameterization, regularization and methods solving the optimization problem
are discussed in Sects. 4 and 5. Finally, examples of sensitivity kernels for different
seismic waves are shown in Sect. 6, which provide the basis for future tomographic
inversions with various seismic phases. This paper focuses on theoretical derivation of10

the wave-equation based traveltime seismic tomography. An application of the WETST
method is presented in the second paper (Tong et al., 2014b).

2 Tomographic equation

In this section, we set up a linear relationship between the perturbation of arrival time
and velocity perturbation in a reference model.15

2.1 Traveltime residual

Traveltime seismic tomography generally inverts traveltime residuals of some seismic
phases to map the internal Earth structures. A traveltime residual ∆t corresponding to
the event occurred at xs and the seismic station located at xr is written as,

∆t = T obs − T syn, (1)

where the observed traveltime T obs is automatically or manually picked on recorded
seismogram d (t), and the synthetic arrival time T syn is predicted based on a reference
model. In geometrical ray theory, T syn is usually computed by integrating the slowness
along a travelling path.5

If the corresponding synthetic seismogram u(t) in the reference model is available,
the traveltime residual ∆t can be approximated by the cross-correlation technique
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(Dahlen et al., 2000)

∆t ≈ 1
Nr

T∫
0

w(t)u̇(t) [d(t)−u(t)]dt, (2)

where10

Nr =

T∫
0

w(t)u(t)ü(t)dt

and w(t) is a weight function over the time interval [0,T ] that can be used to isolate
particular seismic phases (Tromp et al., 2005). The accuracy of this approximation
improves as data and synthetic pulse becomes more similar, i.e., waveform perturba-
tion d (t)−u(t) in Eq. (2) becomes tiny. Assuming infinitesimal perturbations, Eq. (2)15

becomes

δt =
1
Nr

T∫
0

w(t)u̇(t)δu(t)dt, (3)

which is used further to set up the relationship between traveltime residual and velocity
perturbation.

2.2 Relation between traveltime residual and velocity perturbation5

We consider seismic wave propagation in a two-dimensional (2-D) vertical plane which
contains the source xs and the receiver xr. Within this plane, seismic wavefield of
a particular phase (without mode conversion) could be assumed to satisfy the 2-D
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acoustic wave equation with initial and boundary conditions,
∂2

∂t2
u(t,x) = ∇ ·

[
c2(x)∇u(t,x)

]
+ f (t)δ(x−xs), x ∈ S

u(0,x) = ∂u(0,x)/∂t = 0, x ∈ S,

n̂ ·
[
c2(x)∇u(t,x)

]
= 0, x ∈ ∂S.

(4)10

where u(t,x) is the displacement field, c(x) is the either P or S wave velocity model,
f (t) is the source time function for the point source at xs, and n̂ is the normal direction
of the boundary ∂S. For a perturbation δc(x) of the velocity model c(x), a conse-
quent perturbed displacement wavefield δu(t,x) will be generated. In the framework
of first-order or Born approximation (e.g. Aki and Richards, 2002; Tromp et al., 2005;
Tong et al., 2011), the perturbed wavefield δu(t,x) is the solution to the following wave
equation with subsidiary conditions,

∂2

∂t2
δu(t,x) = ∇ ·

[
c2(x)∇δu(t,x)+2c(x)δc(x)∇u(t,x)

]
, x ∈ S,

δu(0,x) = ∂δu(0,x)/∂t = 0, x ∈ S,

n̂ ·
[
c2(x)∇δu(t,x)+2c(x)δc(x)∇u(t,x)

]
= 0, x ∈ ∂S.

(5)

Multiply an arbitary test function q(t,x) on both sides of the first equation in Eq. (5) and5

then integrate in the surface S and the time interval [0,T ], we have

T∫
0

dt
∫
S

q(t,x)
∂2

∂t2
δu(t,x)dx (6)

=

T∫
0

dt
∫
S

q(t,x)∇ ·
[
c2(x)∇δu(t,x)+2c(x)δc(x)∇u(t,x)

]
dx
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which is equal to10

∫
S

dx

T∫
0

{
∂
∂t

[
q(t,x)

∂
∂t
δu(t,x)−δu(t,x)

∂
∂t
q(t,x)

]
+δu(t,x)

∂2

∂t2
q(t,x)

}
dt (7)

=

T∫
0

dt
∫
S

δu(t,x)∇ ·
[
c2(x)∇q(t,x)

]
dx−

T∫
0

dt
∫
S

∇ ·
[
δu(t,x)c2(x)∇q(t,x)

]
dx

+

T∫
0

dt
∫
S

∇ ·
{
q(t,x)

[
c2(x)∇δu(t,x)+2c(x)δc(x)∇u(t,x)

]}
dx

−
T∫

0

dt
∫
S

2c(x)δc(x)∇q(t,x) · ∇u(t,x)dx.

15

As traveltime residual δt in Eq. (3) is measured at the receiver location xr, Eq. (3) can
be alternatively expressed as

δt =
1
Nr

T∫
0

w(t)
∫
S

∂u(t,x)

∂t
δu(t,x)δ(x−xr)dxdt. (8)

Sum up Eq. (7) and Eq. (8), use the second and third relationships in Eq. (5), and
assume that

∂2

∂t2
q(t,x)−∇ ·

[
c2(x)∇q(t,x)

]
= 1
Nr
w(t)∂u(t,x)

∂t δ(x−xr), x ∈ S,

q(T ,x) = ∂q(T ,x)/∂t = 0, x ∈ S,

n̂ ·c2(x)∇q(t,x) = 0, x ∈ ∂S,

(9)5
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we can get a relationship as

δt = −
T∫

0

dt
∫
S

[
2c2(x)∇q(t,x) · ∇u(t,x)

] δc(x)

c(x)
dx. (10)

By defining the traveltime sensitivity kernel

K (x;xr,xs) = −
T∫

0

[
2c2(x)∇q(t,x) · ∇u(t,x)

]
dt, (11)10

Equation (10) provides a concise mathematical expression of the relationship between
traveltime residual δt and relative velocity perturbation δc(x)/c(x)

δt =
∫
Ω

K (x;xr,xs)
δc(x)

c(x)
dx. (12)

The traveltime kernel K (x;xr,xs) is a weighted convolution of forward wavefield gra-
dient ∇u(t,x) and the adjoint wavefield gradient ∇q(t,x), which can be obtained by15

solving two wave Eqs. (4) and (9). Assume small perturbations, we can set that ∆t in
Eq. (1) is equal to δt, and Eq. (12) becomes

T obs − T syn =
∫
Ω

K (x;xr,xs)
δc(x)

c(x)
dx. (13)

We call relation (13) the tomographic equation of wave-equation based traveltime seis-
mic tomography. Once the observed arrival time T obs and synthetic arrival time T syn are20

measured or calculated, tomographic equation (13) can be inverted to infer the relative
velocity perturbation δc(x)/c(x).
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3 Arrival time picking

We first discuss how to pick the arrival times of a particular seismic phase on observed
and synthetic seismograms, i.e., T obs and T syn in Eq. (13). Since any errors in arrival25

times will distort the velocity anomalies, this step is crucial for traveltime seismic tomog-
raphy. Although manual arrival-picking is time-consuming and labour intensive, it is still
one of the most reliable and stable techniques to determine the arrival times of specific
seismic phases on observed seismograms. For example, the first-arrivals picked by
analysts of the combined seismic network in Japan (known as the JMA Unified Cata-
logue) have the accuracies of about 0.1 s for P arrival and 0.1–0.2 s for S arrival (Tong
et al., 2012). Before the advent of an automatic, accurate and robust arrival time pick-5

ing method for data, we prefer to use manually picked arrival times T obs on observed
seismograms for tomographic inversion purpose.

Regarding to the arrival time T syn of a particular phase on synthetic seismograms,
we could also use manual picking. But extra subjective errors will be introduced into
the traveltime residual ∆t and further affect final tomographic results. Since synthetic10

seismograms are generated by numerical methods, the errors come mainly from nu-
merical dispersion and can be controlled (but can not be avoided) by employing accu-
rate forward solver or fine meshes in forward numerical modelling. For low-noise seis-
mograms, automatic time-picking schemes such as the STA/LTA method have been
proved to be accurate and efficient for detecting the arrivals of different seismic phases15

(e.g. Saari, 1991; Han et al., 2010). In this study, we present a new envelope energy
ratio method to pick up the arrival times on synthetic seismograms, which has a better
performance than the STA/LTA method. On the other hand, if the starting model m0 for
a tomographic inversion has (or is near) a simple geometry where travelling paths can
be easily and accurately determined, the combined ray and cross-correlation method20

developed later can be used to obtain arrival times of particular phases on synthetic
seismograms.
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3.1 Envelop energy ratio method

We give a brief introduction to the STA/LTA method and then discuss the envelop en-
ergy ratio (EER) method, which is an improved version of the STA/LTA algorithm. Let
u(t) represent a seismogram with a dominant period of T0 in the time window [0,T ],
then the average energies in the short and long term windows preceding the time t are
defined as

S(t) = 1
αT0

∫t
t−αT0

u2(τ)dτ, L(t) = 1
βT0

∫t
t−βT0

u2(τ)dτ, (14)5

where t ∈ [0,T ] and 0 < α < β are coefficients determining the lengths of the short and
long term time windows and should be determined by the user. Usually, α and β are
chosen to be 2 ≤ α ≤ 3 and 5 ≤ β ≤ 10, respectively (Earle and Shearer, 1994). u(τ) is
assumed to be zero for τ < 0. Define the ratio

R(t) =
S(t)
L(t)

, (15)10

and if the ratio R(t) first exceeds a user-defined threshold at t0, t0 is considered to be
the approximate onset time of first arrival on the seismogram u(t) (Munro, 2004). It is
also claimed that the maximum value of the derivative dR(t)/dt may be closer to the
break time of the first arrival (Wong et al., 2009).

In addition, the envelop function of seismogram e(t) = |u(t)+ iH [u(t)] |, where H [u(t)]15

denotes the Hilbert transform of u(t), can be also used in seismic data analysis (e.g.
Baer and Kradolfer, 1987; Maggi et al., 2009). Since the envelope function remains
positive at zero crossings among different phase arrivals, average energy taken from an
envelope function may be a better measure of the signal strength (Baer and Kradolfer,
1987; Earle and Shearer, 1994). Meanwhile, Wong et al. (2009) proposed the modified20

energy method which has excellent performance in determining the break time of first
arrival. By incorporating the envelope function and the modified energy method (Wong
et al., 2009), we define the following envelop energy ratio function to determine the
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arrival time of an interested seismic phase filtered by the window function w(t)

r(t) =

∫t+αT0

t−βT0
w(τ)e2(τ)dτ∫t

t−γT0
w(τ)e2(τ)dτ

, (16)25

where α ≥ 0 and β ≥ γ ≥ 1. The peak of the ratio function r(t) is very close to the onset
time of the interested seismic phase.

To show the performance of the EER method, we apply it to shear-wave synthetic
seismograms generated by an earthquake at 12.0 km depth in a homogeneous crust
with a thickness of 30.0 km based on a high-order finite-difference method (in Ap-
pendix). 51 surface stations with an equal spacing of 2.0 km are used to record seis-5

mograms. α = β = γ = 1.0 are chosen in formula (16). Figure 1a–c shows the S wave
arrival-time picking using the STA/LTA and EER methods on the seismogram for trace
number 26 (Fig. 1d). We can see that S arrival time determined by the EER method is
very close to the theoretical arrival time with errors smaller than 0.05 s. For the STA/LTA
method, the threshold value is set to be 1.0×10−8, and the obtained S arrival time is10

0.24 s later than the theoretical arrival time. Note that an error of 0.24 s is unacceptable
in traveltime inversion for local structures. We further show S and SmS arrival times
on all 51 seismograms in Fig. 1d. For direct S wave, results of both STA/LTA and EER
methods are relatively close to the theoretical arrival times, with errors around 0.3 s
and less than 0.1 s, respectively. However, for SmS phase, the STA/LTA algorithm is15

not able to give accurate estimates on the breaking times. In comparison, the EER
method gives picked arrivals with accuracy similar to the direct S wave case, and 70 %
of the errors are still less than 0.1 s. We have fixed all parameters for the STA/LTA and
EER methods in picking the S and SmS arrival times. Actually, the accuracy of time
picking on any single seismogram can be improved by slightly tuning some parame-20

ters, such as the threshold value for the STA/LTA method and the lengths of the time
windows for both methods. We also find that the accuracy of the STA/LTA method is
very sensitive to the threshold value and it is not an easy task to determine an appropri-
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ate threshold in practice. For the EER method, however, it is simple to locate the peak
of the ratio function r(t). This implies that the EER method could be a better choice for
arrival-time picking on synthetic seismograms.5

3.2 Combined ray and cross-correlation method

Because of the non-linearity of seismic inverse problems, seismic tomography usually
relies on an iterative method to find the optimal model. If the starting model m0 for
traveltime seismic tomography is simple (e.g., 1-D layered model) and travelling paths
of particular phases can be easily traced, the arrival times T syn

0 of synthetics in m010

can be accurately determined based on ray theory. Meanwhile, we may expect that
synthetic seismograms in the (i +1)th model mi+1 are reasonably similar to those in
the i th model mi (i ≥ 0), and the arrival-time shift δti+1,i of a particular phase in models
mi+1 and mi can be calculated with high accuracy by maximizing the cross-correlation
formula,15

max
δti+1,i

∫T
0 w(τ)s(τ;mi+1)s(τ −δti+1,i ;mi )dτ[∫T

0 w(τ)s2(τ;mi+1)dτ
∫T

0 s
2(τ −δti+1,i ;mi )dτ

]1/2
, (17)

where w(t) is the time window function used to isolate the interested phase (Liu et al.,
2004). Consequently, the arrival time T syn

i+1 of the synthetic seismogram in model mi+1
satisfies the following relation,

T syn
i+1 = T syn

0 +
i∑
j=0

δtj+1,j . (18)20

Since T syn
0 and δtj+1,j are calculated with ray theory and cross-correlation method,

respectively, Eq. (18) is called the combined ray and cross-correlation method.
Continuing the numerical example shown in the section of the EER method, we

intend to verify the validity of the combined ray and cross-correlation method. Let m0
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be the crust model with an S wave velocity of 3.2km s−1 and a thickness of 30.0 km.25

S wave velocity in m1 is assumed to be 3.456km s−1 which has a perturbation of 8.0%
with respect to m0. Synthetic seismograms generated by an earthquake at 12.0 km
depth are calculated and recorded by 51 stations at the surface in both m0 and m1.
For models m0 and m1, theoretical arrival times of S and SmS phases at each station
can be calculated based on the ray theory (see solid red circles and black squares in
Fig. 2a). Based on Eq. (17), we also measure arrival shifts of S and SmS in m1 from
those in m0. Adding S and SmS arrival shifts to their corresponding arrival times for m05

(solid black squares in Fig. 2a), we get the approximated arrival times of S and SmS
in model m1 (blue stars in Fig. 2a). Figure 2b shows the errors of the combined ray
and cross-correlation method in determining the arrival times of S and SmS in model
m1. It can be observed that the errors of direct S arrivals are less than 0.005 s, and
70 % errors of the SmS phases are smaller than 0.005 s with maximum error around10

about 0.175 s occurring at the 4th and 48th stations. Considering that the traveltime
differences of the SmS phase in the two models are about 1.7 s at the two stations,
these picking errors are relatively small. This numerical example suggests that the
combined ray and cross-correlation method could serve as an efficient tool for high
accuracy arrival-time picking on synthetic seismograms in the iterative wave-equation15

based tomographic inversions.

4 Model Parameterization

Tomographic equation (13) needs invariably to be discretized for actual inversions (No-
let et al., 2005). This gives rise to model parameterization, which is an approximation
to the true Earth structure. Model parameterization determines the accuracy of forward20

modelling and hence affects the final form of tomographic inversion results. Most com-
monly, functional approach with a set of basis functions or an a prior functional form,
such as cells and grid nodes have been adopted to represent the Earth structure (e.g.
Dziewonski, 1984; Aki and Lee, 1976; Thurber, 1983). Each approach has its own
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advantages and drawbacks (e.g. Zhao, 2009; Rawlinson et al., 2010). To guarantee
accurate computation of synthetic seismograms and traveltime kernels and to adapt to
local variations in data coverage, we use two sets of grid nodes (i.e., forward modelling
grid and inversion grid) to parameterize the Earth structure for forward modelling and
inversion algorithms in this study.5

4.1 Forward modelling grid

As discussed in Sect. 2, we need to solve wave Eqs. (4) and (9) to obtain syn-
thetic seismogram u(t) and traveltime kernel K (x). Many numerical methods such as
staggered-grid finite-difference (FD) method (e.g. Virieux, 1984; Graves, 1996) and
spectral-element method (Komatitsch and Tromp, 1999) are well suited for this kind10

of forward modelling. In this study, we choose a FD scheme called high-order cen-
tral difference method (see Appendix) to conduct forward modelling. The prominent
feature of this high-order central difference method is that it simultaneously computes
the displacement u(t,x) and the spatial gradient field ∇u(t,x), making the computa-
tion of the traveltime kernel K (x) very straightforward. It is also easier to implement15

the high-order central difference method than the staggered-grid finite-difference (FD)
method and spectral-element method. When sensitivity kernels are calculated by solv-
ing the full wave equation, there are spurious amplitudes in the immediate vicinity of
the sources and receivers (Tape et al., 2007; Tong et al., 2014a). An efficient way of
removing these spurious amplitudes is to smooth the traveltime kernel K (x) = K (x,z)20

with a 2-D Gaussian

G(x,z) =
4

πσ2
e−4(x2+z2)/σ2

, (19)

where σ is the averaging scale length chosen to be less than the main wavelength of
the seismic waves (Tape et al., 2007). The smoothed traveltime kernel K̃ (x,z) is given
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by

K̃ (x,z) =
∫ ∫
S

K (x−x′,z− z′)G(x′,z′)dx′dz′, (20)5

i.e., the smoothed kernel value at a given point is obtained by averaging the un-
smoothed kernel values at its neighbouring points.

For the 2-D FD numerical simulation, the continuous area S is sampled by a set of n
discrete nodes xi (i = 1,2, · · · ,n). By choosing a corresponding set of n basis functions
Li (x) (i = 1,2, · · · ,n), the smoothed traveltime kernel K̃ (x) and the relative velocity per-10

turbation δc(x)/c(x) can be expanded into linear combinations of the basis functions
as

K̃ (x;xr,xs) =
n∑
i=1

KiLi (x) , δc(x)/c(x) =
n∑
i=1

CiLi (x), (21)

where Ki and Ci are the corresponding coefficients related to the basis function Li (x).
Substituting Eq. (21) into Eq. (13) results in the discrete form of the tomographic equa-
tion

T obs − T syn =
∫
S

 n∑
j=1

KjLj (x)

[ n∑
i=1

CiLi (x)

]
dx =

n∑
i=1

 n∑
j=1

Kj

∫
Ω

Lj (x)Li (x)dx

Ci . (22)

A general way to define a basis function Li (x) is to construct a local interpolation func-5

tion on knot node xi and its neighbours. The possibility of different choices for the basis
functions Li (x) (i = 1, · · · ,n) has led to various inversion algorithms (Nolet et al., 2005).
As the high-order central difference method discussed in this study simulates seismic
wave propagation on a 2-D regular mesh, we assume the spatial increments along x
and z directions are ∆x and ∆z, respectively. Let the knot node xi with a global index i10
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be the grid node (xm,zn) on the 2-D mesh. In this scenario, the simplest basis function
may be the piecewise constant function

Li (x) = Li (x,z) =

{
1, if (x,z) ∈

[
xm−1/2,xm+1/2

]
×
[
zn−1/2,zn+1/2

]
;

0, else .
(23)

And the coefficient of the unknown Ci in Eq. (22) is

n∑
j=1

Kj

∫
Ω

Lj (x)Li (x)dx = ∆x∆zKi . (24)15

However, interpolation function with the basis functions (23) is not even continuous.
To make the interpolation function continuous, we could use bilinear interpolation to fit
the perturbation field δc(x)/c(x) and the traveltime kernel K (x). Bilinear interpolation
performs linear interpolation first in one direction and then in the other direction. The
basis function Li (x) for bilinear interpolation takes the following form20

Li (x) = Li (x,z) =



x−xm−1
xm−xm−1

z−zn−1
zn−zn−1

, if (x,z) ∈
[
xm−1,xm

]
×
[
zn−1,zn

]
;

x−xm−1
xm−xm−1

zn+1−z
zn+1−zn

, if (x,z) ∈
[
xm−1,xm

]
× [zn,zn+1] ;

xm+1−x
xm+1−xm

z−zn−1
zn−zn−1

, if (x,z) ∈ [xm,xm+1]×
[
zn−1,zn

]
;

xm+1−x
xm+1−xm

zn+1−z
zn+1−zn

, if (x,z) ∈ [xm,xm+1]× [zn,zn+1] ;

0, else .

(25)

Correspondingly, the coefficient for the unknown Ci in Eq. (22) becomes

n∑
j=1

Kj

∫
Ω

Lj (x)Li (x)dx = ∆x∆z

 1
36

4
36

1
36

4
36

16
36

4
36

1
36

4
36

1
36

 ◦

Km−1,n+1 Km,n+1 Km+1,n+1
Km−1,n Km,n Km+1,n
Km−1,n−1 Km,n−1 Km+1,n−1

 , (26)
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where ◦ denotes entrywise product and kernel values for global and local grids are
linked by Ki+pM+q = Km+p,n+q (M is the number of grid nodes along x direction, and25

p,q = −1,0,1). To have a smoother fitting function, we could further use bicubic inter-
polation, which is an extension of cubit interpolation on 2-D regular mesh. Actually, in
the framework of piecewise constant interpolation (Eq. 23), both bilinear interpolation
and bicubic interpolation can be achieved by replacing Ci ’s coefficient ∆x∆zKi in Eq.
(24) with a weighted average value ∆x∆zK̃i around the knot node xi and its neighbours
such as shown in Eq. (26). Since we have previously smoothed the kernel by convolv-
ing it with a Gaussian, using piecewise constant interpolation or bilinear interpolation
to construct tomographic equation (22) is accurate enough for practical applications.5

4.2 Inversion grid

For the high-order central difference scheme, we assume that seismic waves propagate
in 2-D vertical planes and hence sensitivity kernels are restricted to the same 2-D
planes. For a single pair of source xs and receiver xr, the forward grid nodes and
equally the velocity model parameters Ci are distributed on a 2-D regular mesh in Eq.10

(22). An additional set of grid nodes needs to be introduced to characterize the actual 3-
D tomographic region. For simplicity, we use a regular grid with variable grid intervals to
represent the final tomographic results, which has the advantage of allowing a fine grid
for a target volume with dense data coverage (mostly depending on spatial distribution
of source and receivers) to be imbedded in coarse grid nodes.15

To be consistent with the realistic application in the second paper, we directly set
up the inversion grid in geographical coordinate system (d ,φ,λ), where d , φ, and λ
are depth, latitude and longitude, respectively. If the Cartesian coordinate system is
adopted for the inversion grid, the following derivation procedure is almost the same.
In a 3-D regular inversion grid, each forward modelling grid node xi (i = 1,2, · · · ,n) is20

located within a cube formed by eight inversion grid nodes (Fig. 3). It is natural and
straightforward to use trilinear interpolation between the eight grid nodes (Zhao et al.,
1992). Note that the Cartesian coordinate xi should be transformed into geographical
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coordinate x̃i prior to locating it in a cube. Assume that x̃i is located within the cube
formed by (dr+j1 ,φp+j2 ,λq+j3) (j1, j2, j3 = 0,1; 1 ≤ r+j1 ≤ R; 1 ≤ p+j2 ≤ P ; 1 ≤ q+j3 ≤Q;5

R,P ,Q are the numbers of inversion grid nodes along depth, latitude and longitude,
respectively), the unknown velocity model parameter Ci corresponding to x̃i can be
expressed as a linear combination of the parameters Xr+j1,p+j2,q+j3 (j1, j2, j3 = 0,1) at
the eight inversion grid nodes:

Ci =
1∑

j1,j2,j3=0

(
1−

∣∣∣∣∣d −dr+j1
dr+1 −dr

∣∣∣∣∣
)(

1−

∣∣∣∣∣ φ−φp+j2
φp+1 −φp

∣∣∣∣∣
)(

1−
∣∣∣∣ ψ −ψq+j3
ψq+1 −ψq

∣∣∣∣)Xr+j1,p+j2,q+j3 ,

(27)10

and defines a continuously varying velocity perturbation field δc(x)/c(x). Note that the
velocity field c(x) itself can be discontinuous. Substituting Eq. (27) into Eq. (22) gives
the tomographic equation on the inversion grid

T obs − T syn =
R∑
r=1

P∑
p=1

Q∑
q=1

ar ,p,qXr ,p,q, (28)

where ar ,p,q is the coefficient for the unknown Xr ,p,q and pre-determined, the accuracy15

of which relies on not only the accurate calculation of the traveltime kernel K (x) but
also the choice of the inversion grid. For the convenience of discussion, we convert the
3-D array index (r ,p,q) of the inversion grid to 1-D index n = (r −1)P Q+ (q−1)P +q
(1 ≤ n ≤ N = RPQ). Tomographic equation (28) can be rewritten as

T obs − T syn =
N∑
n=1

anXn (29)20

for a single pair of source xs and receiver xr, which relates the traveltime residual
T obs − T syn linearly to the unknown relative velocity perturbation Xn (1 ≤ n ≤ N) on the
inversion grid.
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5 Regularization and Inversion Method

With a significant increase in both quantity and quality of seismic data from the prolif-25

eration of dense seismic arrays, increasing number of seismic data will be involved in
seismic tomography, which may result in higher-resolution tomographic models. Cer-
tainly, more data will increase the complexity of seismic inverse problem.

When M seismic measurements are used to explore the subsurface structure, M
tomographic equations take the form of Eq. (29) and form a linear system b = AX

at each iteration, where b = [bm]M×1 and bm = T obs
m − T syn

m is the iterative traveltime
residual vector, A = [am,n]M×N is the Fréchet or Jacobin matrix calculated in the current5

iterative model and X = [Xn]N×1 is the unknown model vector. Since the problem b =
AX is always ill-posed (either because of non-uniqueness or non-existence of X), the
general way to solve it is to seek a solution that minimizes the following regularized
objective function

χ (X) =
1
2

(AX −b)TC−1
d (AX −b)+

ε2

2
XTC−1

m X +
η2

2
XTDTDX, (30)10

where Cd and Cm are the a prior data and model covariance matrix which reflect the
uncertainties in the data and the initial model (Rawlinson et al., 2010), D is a deriva-
tive smoothing operator for model vector X, ε and η are the damping parameter and
smoothing parameter, respectively (e.g. Tarantola, 2005; Li et al., 2008; Rawlinson
et al., 2010). The last two terms on the right hand side of Eq. (30) are regularization15

terms, which are included to improve the conditioning of the inverse problem b = AX

and are designed to give preference to solutions with desirable properties (Aster et al.,
2012): damping favours a result that is close to the reference model, while smooth-
ing reduces the differences between adjacent nodes and thus produces smooth model
variations (Li et al., 2006). Generally speaking, objective function (30) tries to strike20

a balance between how well the solution satisfies the data, the variations of the solu-
tion from the reference model, and the smoothness of the solution model.

2544



D
iscussion

P
a

per
|

D
iscussion

P
a

per
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Calculating the gradient (Fréchet derivative) of the objective function χ (X) is often
a key step in finding an optimal solution to the minimization problem (30) (Rawlinson
et al., 2010). Here the Fréchet derivative of the objective function χ (X) can be ex-
pressed as5

∂χ (X)

∂X
=
(

ATC−1
d A+ε2C−1

m +η2DTD
)
X −ATC−1

d b. (31)

Based on the Fréchet derivative ∂χ (X)/∂X, we describe two different approaches to
solve the optimization (minimization) problem (Eq. 30).

5.1 LSQR solver

The minimizer X̃ of Eq. (30) satisfies ∂χ (X̃)/∂X = 0 and formally can be expressed as10

X̃ =
(

ATC−1
d A+ε2C−1

m +η2DTD
)−1

ATC−1
d b. (32)

Clearly, to explicitly obtain X̃ we need to invert an N×N matrix. There are various meth-
ods available to fulfil this goal, such as LU decomposition, single value decomposition
(SVD), conjugate-gradient type of methods such as LSQR algorithm. Among these15

methods, LSQR algorithm may be one of the most efficient and widely used methods
to solve a linear system, especially when N is very large (Paige and Saunders, 1982).
Additionally, the minimization problem (Eq. 30) is equivalent to solving the following
linear system in a least square senseC−1/2

d A

εC−1/2
m
ηD

X =

C−1/2
d b

0
0

 , (33)20

and application of LSQR or SVD to Eq. (33) will give the same solution as that of Eq.
(32) (Rawlinson et al., 2010). Once we obtain a perturbation velocity field X̃, the velocity
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model can be updated from the current velocity model on inversion grid, C, to C+ X̃.
Because of the non-linearity of the inverse problem, further iteration may be needed to
update the velocity model until the objective function χ (X) reaches below a tolerance
level.5

5.2 Non-linear conjugate gradient method

Once we have the Fréchet derivative of the objective function computed in Eq. (31),
instead of inverting the matrix in Eq. (32), we can alternatively use a non-linear
conjugate-gradient method to iteratively improve the model (e.g. Fletcher and Reeves,
1964; Tromp et al., 2005). Previous studies have shown the feasibility and efficiency of10

this non-linear conjugate-gradient method in recovering seismic properties of the Earth
interior (e.g. Tape et al., 2007, 2009; Zhu et al., 2012). Here we summarize the step-
by-step process of this non-linear conjugate-gradient method, which starts from k = 0
(Tape et al., 2007; Kim et al., 2011):

1. Calculate the objective function χ (Xk), compute the gradient gk = ∂χ/∂Xk ,15

2. Compute the model update direction p
k = −gk +βkp

k−1. For the first iteration
k = 0, set β0 = 0 and p

0 = −g0; otherwise calculate βk based on the formula

βk = max

(
0,

g
k · (gk −g

k−1)

gk−1 ·gk−1

)
. (34)

3. Determine the step length λk in the model update direction:

– Let f1 = χ (Xk), g1 = g
k ·pk , and compute a test step length λt = −2f1/g1.20

– Calculate the test perturbation model Xkt = X
k + λtp

k .

– Compute the objective function χ (Xkt ) and let f2 = χ (Xkt ). Note that we gen-
erally have f1 > f2 > 0.
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– Compute

γ = [(f2 − f1)−g1λt]/λ
2
t , ξ = g1 (35)

and then λk is given by

λk =

{
−ξ/(2γ), γ 6= 0;

error, otherwise.
(36)5

4. Update the perturbation model Xk+1 = X
k + λkp

k .

5. If ||gk ||L2
= (gk ·gk)1/2 ≤ ε, the tolerance level, then X

k+1 is the optimal perturba-
tion model; otherwise reiterate from the first step (i) with k +1.

For the current model mk which has a perturbation X
k from the starting model m0, we

can rewrite the gradient of the objective function as10

∂χ (Xk)

∂X
= −(Ak)TC−1

d bk +
(
ε2C−1

m +η2DTD
)
Xk , (37)

where Ak and b
k are respectively the Fréchet matrix and traveltime residuals in the kth

model. The first term on the right hand side of Eq. (37) is actually the sum of all trav-
eltime kernels (negatively) weighted by their corresponding traveltime residuals. That
is to say, if no damping and smoothing operations are applied, the gradient (Eq. 37) is15

simply the sum of all weighted individual traveltime kernels. Since operators C−1
d , C−1

m
and D remain constant throughout the whole process, to update the model from mk to
mk+1 we only need to compute the Fréchet matrix and traveltime residuals in model
mk . This is different from the approach using the LSQR algorithm as a linear system
is solved at each iteration. Generally speaking, the model update with the LSQR al-20

gorithm may be larger than the non-linear conjugate-gradient method and the LSQR
approach probably requires fewer iterations.
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6 Numerical examples

As discussed in Sect. 5, computing traveltime sensitivity kernel or the Fréchet deriva-
tive of the objective function is one of the key components of wave-equation based25

traveltime seismic tomography. In this section, we show examples of Fréchet kernel for
one earthquake. These examples provide insights into sensitivities of various seismic
phases and the future applications of wave-equation based traveltime seismic tomog-
raphy involving tens of thousands of seismic records.

A two-layer S wave velocity model with the Moho discontinuity at a depth of 30.0 km
is used as a reference model. The size of the model is 100 km×50 km. S wave ve-
locities in the crust and the mantle are 3.2km s−1 and 4.5km s−1, respectively. The
“true” model is the same two-layer S wave velocity model but with a −5.0% low ve-
locity anomaly (red box in Fig. 5) and a +5.0% high velocity anomaly (blue box in5

Fig. 5) included in the mid-crust. An earthquake is placed at the horizontal distance
x = 50.0km and the depth of 12.0km with the dominant frequency of the Gaussian
source time function at 1.0 Hz. There are 51 stations equally spaced on the surface
with an interval of 2.0km. The high-order central difference method is used as the for-
ward solver. Seismograms recorded at x = 14.0km and x = 86.0km on the surface are10

shown in Fig. 4a and 4b, respectively. Three main phases can be observed in these
seismograms, including the direct S wave, the Moho reflected phase SmS and the sur-
face reflected wave sSmS, which provide complementary information on the crustal
structures. For example, D. Zhao et al. (2005) have used S, SmS and sSmS arrivals
to conduct crustal tomography in the 1992 Landers earthquake area with a ray-based15

tomographic method. Here we compute Fréchet kernels for the three seismic phases.
Because only sensitivity kernels are computed and no inversion is conducted, the two
regularization terms at the right hand side of Eq. (37) are not taken into account in this
section.

For seismograms recorded at x = 14.0km (Fig. 4a). The direct S wave and the Moho20

reflected SmS phase for the “true” model arrive closely following the corresponding
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phases in the reference model. As shown in Fig. 5a and b, the geometrical ray paths
of both phases are partially within the low velocity zone, and therefore it is reasonable
to have delayed S and SmS arrivals in the “true” model. For the sSmS phase, its geo-
metrical ray path does not pass through the low velocity zone but its first Fresnel zone25

partially coincides with the low velocity anomaly (Fig. 4c). Due to the influence of the
low velocity zone, the arrival time of sSmS is delayed by 0.0025 s obtained through
cross-correlation calculation. The Fréchet kernels for S, SmS and sSmS are shown
in Fig. 5a–c, which closely follows their corresponding geometry ray paths (indicated
by dashed lines). The positive Fréchet kernel values in the first Fresnel zones indicate
that a reduction of velocity within these regions will result in the reduction of objective
function χ . Figures 4b and 5d–f are for the case when seismic waves travel through
a high velocity region in the “true” model and seismograms are recorded at the sta-5

tion x = 86.0km. Negative Fréchet kernel values in the first Fresnel zones suggest that
an increase of velocity in this region of the reference model can reduce the objective
function χ .

The Fréchet kernels displayed in Fig. 5a–f are associated with a particular seismic
phase at one seismic station, i.e. the individual kernels. Of course one seismic record10

does not well constrain the subsurface heterogeneous structure. With the 51 stations
on the surface, we could compute the Fréchet kernel for one seismic phase defined at
all seismic stations, shown in Fig. 5g–i. These kernels are actually the sum of individ-
ual S, SmS and sSmS kernels computed at each station. Due to the increased data
coverage and the constructive effect, both the low and high velocity areas are sampled15

by the bulk part of the kernels. The values of these three kernels are positive within
the low velocity zone and negative within the high velocity area, which indicates that
updating the velocity model in the opposite direction −∂χ (X)/∂X would reduce the
objective function χ . We could further define the objective function χ as the sum of S,
SmS and sSmS phases at all seismic stations. The corresponding Fréchet kernel is20

shown in Fig. 6, which is the sum of the kernels in Fig. 5g–i. It can be observed that
kernel values at the anomalous regions are not prominent in Fig. 5g–i, but are dominant
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in Fig. 6. This suggests that we may simultaneously use different seismic phase data
to highlight anomalous structures in future study. For demonstration purpose, we only
worked with one event in this part. To increase the illumination, more seismic events25

should be included. Once the Fréchet kernels for all events and phases are computed,
the LSQR solver or the non-linear conjugate-gradient method can be used to iteratively
improve the velocity model.

7 Discussion and conclusions

Wave-equation based traveltime seismic tomography (WETST) involves 2-D forward
modelling and 3-D tomographic inversion. Considering adjoint tomography based on
3-D spectral-element method as an approach for “3-D-3-D” seismic tomography (e.g.5

Tromp et al., 2005; Tape et al., 2009; Zhu et al., 2012), WETST can be viewed as a “2-
D-3-D” adjoint tomography technique. From the computation point of view, 2-D forward
modelling with a high-order central difference scheme is computationally efficient and
can be conducted on most single PCs. This makes it possible to handle large seismic
data sets with WETST. Actually, increasing data amount and data coverage is the best10

way to improve the resolution of tomographic results, and sometimes may compensate
for the approximations in the tomography technique itself. For example, it is well known
that one main drawback of ray theory is that it does not consider the influence of off-ray
structures (Dahlen et al., 2000), but a good data set with a dense and even distribution
of ray paths can greatly improve the resolution of ray tomography (Tong et al., 2011).15

A similar problem for the 2-D approximation in WETST is its ignorance of the off-plane
influence on seismic arrivals. To what extent this approximation is valid and how it
affects the final inversion results should be further investigated. But taking advantage
of the computational efficiency of 2-D forward modelling, we may be able to reduce the
effect of the 2-D approximation by increased data coverage in real applications.20

WETST only uses traveltime information for two main reasons. First, traveltime is
quasi-linear with respect to variations in the velocity structures, which greatly assists
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the convergence of gradient-based inversion methods as presented in Sect. 5. Sec-
ond, compared with fitting waveforms, it is much easier to predict the arrival times of
particular phases on synthetic seismograms computed through 2-D forward modelling.25

The envelop energy method or the combined ray and cross-correlation method pre-
sented in this study can be easily implemented to pick the arrival times on synthetic
seismograms.

If 3-D finite-frequency effects need to be taken into account and full waveform fitting
is required, we suggest the use of “3-D-3-D” tomographic techniques such as adjoint
tomography based on spectral-element method (Tromp et al., 2005; Fichtner et al.,
2006). In this case, WETST may be used to construct the starting models for “3-D-3-D”
seismic tomography. The hybrid approach could help reduce the total computational
costs and speed up the convergence rate of the inverse algorithm as a “closer” initial5

model is used. Considering that ray-based seismic tomography methods are still the
most prevalent tomographic methods and WETST has the advantage of more accu-
rately computed sensitivity kernels, WETST may be a potentially useful compromise
for 3-D tomographic inversions before the wider application of “3-D-3-D” seismic to-
mography in the near future.10

Forward modelling in WETST discussed in this paper is based on solving a 2-D
acoustic wave equation in the Cartesian coordinates. If the source and the receiver
are far away apart and the curvature of the Earth cannot be neglected, the acoustic
wave equation in Cartesian coordinates needs to be transformed into geographical co-
ordinates, which may be necessary for the use of teleseismic data. Currently, WETST15

cannot use converted seismic phases such as P –S or simultaneously determine the
P wave and S wave velocity structures in tomographic inversions. But these two goals
can be achieved by replacing the 2-D acoustic wave equation with the 2-D elastic wave
equation. Additionally, a regular grid with variable grid intervals is suggested to repre-
sent the final tomographic results in this paper. To automatically adapt the inversion20

grid to the data distribution, adaptive mesh using Delaunay triangles and Voronoi poly-
hedra can be alternatively adopted (e.g. Sambridge and Rawlinson, 2005; Zhang and

2551

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Thurber, 2005; Rawlinson et al., 2010). Source inversion and discontinuity (such as
the depth of Moho) determination may also be considered in the future (e.g. Liu and
Tromp, 2008; Tong et al., 2014a).5

In addition, WETST can include not only direct first arrivals (P wave and S wave)
but also later reflected (e.g. PmP, SmS, pPmP, sSmS) and refracted (Pn, Sn) phases
as the ray-based tomographic methods do (e.g. D. Zhao et al., 1992, 2005; Xia et al.,
2007). Different seismic phases have different travelling paths and are influenced by
structural anomalies differently. The combining use of various seismic phases can in-10

crease the illumination of the subsurface structures (Figs. 5 and 6). Since WETST
conducts forward modelling in 2-D vertical planes with an efficient high-order central
difference scheme, it is possible to include a large set of seismic data in tomographic in-
version. Two different inversion algorithms, LSQR solver and the non-linear conjugate-
gradient method, can be used to find the optimal tomographic results with efficiency.
In a companion paper, we will use WETST to explore the heterogeneous structures
beneath the 1992 Landers earthquake (Mw 7.3) area.

Appendix A: High-order central difference method5

Yang et al. (2012) developed a finite-difference scheme, nearly-analytic central differ-
ence (NACD) method, to solve the 2-D acoustic wave equation. The NACD method
has fourth-order accuracies in both space and time, and it uses only three grid nodes
in each spatial direction. This method shows a good performance in suppressing nu-
merical dispersions. The essence of the NACD method is to use displacement and10

its spatial gradient to approximate second and higher order spatial derivatives of the
displacement. To achieve this goal, the displacement gradient field is obtained by nu-
merically solving some derived acoustic wave equations (Yang et al., 2012). For sim-
plicity, we use a simplified version of the NACD method to simulate 2-D acoustic wave
propagation. In this approach, the value of the spatial gradient along one axis at a par-15

ticular node is interpolated by the displacement values at its neighbouring grid nodes.
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We call the resultant numerical scheme as the high-order central difference method.
The detailed schemes of the high-order central difference method are summarized as
follows:
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The high-order central difference method also has fourth-order temporal accuracy
and fourth-order spatial accuracy. Besides, the perfectly matched layer boundary con-
dition is used to absorb the outgoing waves (Komatitsch and Tromp, 2003). To im-
plement this numerical method, the gradients ∂u/∂x and ∂u/∂z should be explicitly
computed based on formulas (A5) and (A6). Since the gradients of the displacement15

are computed in forward modelling, the computation of the traveltime sensitivity ker-
nel (Eq. 11) becomes very straightforward, which shows that the high-order central
difference method can be naturally adapted for kernel computations.
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Figure 1. S arrival time-picking using (a) the STA/LTA method and (b) the envelop energy ratio
(EER) method for the synthetic seismogram in (c), which is the seismogram for trace number
26 in (d). (d) Displays synthetic seismograms recorded by 51 stations with an equal spacing
of 2 km at the surface, which are generated by an earthquake at the depth 12.0 km directly
below the 26th station. The computational domain is a crust over mantle model. The crust has
a thickness of 30.0 km and is homogeneous with the S wave velocity 3.2km s−1 in the crust
and 4.5km s−1 in the mantle. In (c) and (d), the arrival times of S and SmS phases determined
based on the STA/LTA and EER methods are labelled with brown and blue lines, respectively.
The theoretical arrivals are marked by red lines.
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41Figure 2. (a) S and SmS arrival times on seismograms computed in two models m0 and m1.
Numerical computation in m0 is the same as the example shown in Fig. 1. S wave velocity in
m1 has a perturbation of 8% with respect to m0. Black squares, red circles, and blue stars are
corresponding to theoretical arrival times in m0, theoretical arrival times in m1, and arrival times
computed by using the combined ray and cross-correlation method, respectively. (b) Errors of
S (red circles) and SmS (blue circles) arrival times determined by using the combined ray and
cross-correlation method.
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Figure 3. Linear interpolation of the material properties on one forward modelling grid node (pur-
ple square) with material properties on its eight surrounding inversion grid nodes (purple circles).
Forward modelling grid is a regular 2D mesh with fixed grid intervals (formed by grey lines), and
inversion grid is a 3D regular mesh with variable grid intervals. Black star and black inverse triangle
denote the locations of the earthquake and seismic station in the 2D vertical plane, respectively.
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Figure 3. Linear interpolation of the material properties on one forward modelling grid node
(purple square) with material properties on its eight surrounding inversion grid nodes (purple
circles). Forward modelling grid is a regular 2-D mesh with fixed grid intervals (formed by grey
lines), and inversion grid is a 3-D regular mesh with variable grid intervals. Black star and black
inverse triangle denote the locations of the earthquake and seismic station in the 2-D vertical
plane, respectively.
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Figure 4. Seismograms recorded by the stations located at (a) x = 14km and (b) x = 86km on
the surface. Seismograms computed in the reference model are shown as black curves, and
those computed in the “true” model are illustrated by red curves. The computational domain is
a crust over mantle model with a size of 100km×50km. The crust has a thickness of 30 km
containing one low and one high velocity zone in the “true” model respect to the reference
model (Fig. 5). The earthquake is located at x = 50km at the depth 12km.
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Figure 5. Fréchet kernels corresponding to direct S (a, d, g), SmS (b, e, h) and sSmS (c, f, i)
phases. (a)-(c) are computed only using seismograms recorded at the station x= 14 km. These
seismograms are influenced by the low velocity zone in the red box in the ‘true’ model. (d)-(f) are only
related to seismograms recorded at the station x= 86 km, which are influenced by the high velocity
zone in the blue box in the ‘true’ model. (g)-(i) are computed for all 51 stations on the surface. To use
a uniform colour bar indicated at the bottom for all subfigures, each kernel is amplified by multiplying
the number at the left bottom of the corresponding subfigure.
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Figure 5. Fréchet kernels corresponding to direct S (a, d, g), SmS (b, e, h) and sSmS (c, f,
i) phases. (a)–(c) Are computed only using seismograms recorded at the station x = 14km.
These seismograms are influenced by the low velocity zone in the red box in the “true” model.
(d)–(f) Are only related to seismograms recorded at the station x = 86km, which are influenced
by the high velocity zone in the blue box in the “true” model. (g)–(i) Are computed for all 51
stations on the surface. To use a uniform colour bar indicated at the bottom for all subfigures,
each kernel is amplified by multiplying the number at the left bottom of the corresponding
subfigure.

2565

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

0

50

D
e

p
th

 (
k
m

)

0 50 100

Distance (km)

S+SmS+sSmS

−0.05 0.00 0.05

(sec2/km2)

Figure 6. Summation of the Fréchet kernels corresponding to the kernels for S, SmS and sSmS
phases in Figs. 5g-i.
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Figure 6. Summation of the Fréchet kernels corresponding to the kernels for S, SmS and sSmS
phases in Fig. 5g–i.
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